Uncovering the Physics of Frustrated Quantum Magnets using the Correlation Density Matrix Approach
Related publications (75)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Motivated by the recent success of tensor networks to calculate the residual entropy of spin ice and kagome Ising models, we develop a general framework to study frustrated Ising models in terms of infinite tensor networks that can be contracted using stan ...
With the development of quantum optics, photon correlations acquired a prominent role as a tool to test our understanding of physics, and played a key role in verifying the validity of quantum mechanics. The spatial and temporal correlations in a light fie ...
Despite their simple formulation, short-range classical antiferromagnetic Ising models on frustrated lattices give rise to exotic phases of matter, in particular, due to their macroscopic ground-state degeneracy. Recent experiments on artificial spin syste ...
The spin-1/2 Heisenberg model on the pyrochlore lattice is an iconic frustrated three-dimensional spin system with a rich phase diagram. Besides hosting several ordered phases, the model is debated to possess a spin-liquid ground state when only nearest-ne ...
Scale-invariant magnetic anisotropy in RuCl(3)has been revealed through measurements of its magnetotropic coefficient, providing evidence for a high degree of exchange frustration that favours the formation of a spin liquid state. In RuCl3, inelastic neutr ...
The compound La2-2xSr1+2xMn2O7,x= 0.30-0.40, consists of bilayers of ferromagnetic metallic MnO(2)sheets that are separated by insulating layers. The materials show colossal magnetoresistance-a reduction in resistivity of up to two orders of magnitude in a ...
Motivated by dipolar-coupled artificial spin systems, we present a theoretical study of the classical J(1)-J(2)-J(3) Ising antiferromagnet on the kagome lattice. We establish the ground-state phase diagram of this model for J(1) > |J(2) |, |J(3) | based on ...
The S=1 Affleck-Kennedy-Lieb-Tasaki (AKLT) quantum spin chain was the first rigorous example of an isotropic spin system in the Haldane phase. The conjecture that the S=3/2 AKLT model on the hexagonal lattice is also in a gapped phase has remained open, de ...
We present a comprehensive study of a model system of repulsive self-propelled disks in two dimensions with ferromagnetic and nematic velocity alignment interactions. We characterize the phase behavior of the system as a function of the alignment and self- ...
Long-range magnetic ordering and short-range spin correlations in layered noncentrosymmetric orthogermanate Li2MnGeO4 were studied by means of polarized and unpolarized neutron scattering. The combined Rietveld refinement of synchrotron and neutron powder ...