Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper offers a new algorithm to efficiently optimize scheduling decisions for dial-a-ride problems (DARPs), including problem variants considering electric and autonomous vehicles (e-ADARPs). The scheduling heuristic, based on linear programming theor ...
Weighted flow time is a fundamental and very well-studied objective function in scheduling. In this paper, we study the setting of a single machine with preemptions. The input consists of a set of jobs, characterized by their processing times, release time ...
In this thesis we present and analyze approximation algorithms for three different clustering problems. The formulations of these problems are motivated by fairness and explainability considerations, two issues that have recently received attention in the ...
In this thesis, we give new approximation algorithms for some NP-hard problems arising in resource allocation and network design. As a resource allocation problem, we study the Santa Claus problem (also known as the MaxMin Fair Allocation problem) in which ...
We consider a learning system based on the conventional multiplicative weight ( MW) rule that combines experts' advice to predict a sequence of true outcomes. It is assumed that one of the experts is malicious and aims to impose the maximum loss on the sys ...
Machine intelligence greatly impacts almost all domains of our societies. It is profoundly changing the field of mechanical engineering with new technical possibilities and processes. The education of future engineers also needs to adapt in terms of techni ...
We study the computational complexity of the optimal transport problem that evaluates the Wasser- stein distance between the distributions of two K-dimensional discrete random vectors. The best known algorithms for this problem run in polynomial time in th ...
Stochastic gradient descent (SGD) and randomized coordinate descent (RCD) are two of the workhorses for training modern automated decision systems. Intriguingly, convergence properties of these methods are not well-established as we move away from the spec ...
This paper is devoted to the distributed complexity of finding an approximation of the maximum cut (MAXCUT) in graphs. A classical algorithm consists in letting each vertex choose its side of the cut uniformly at random. This does not require any communica ...
We study the online problem of minimizing power consumption in systems with multiple power-saving states. During idle periods of unknown lengths, an algorithm has to choose between power-saving states of different energy consumption and wake-up costs. We d ...