Transformation (function)In mathematics, a transformation is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: X → X. Examples include linear transformations of vector spaces and geometric transformations, which include projective transformations, affine transformations, and specific affine transformations, such as rotations, reflections and translations.
Stable marriage problemIn mathematics, economics, and computer science, the stable marriage problem (also stable matching problem or SMP) is the problem of finding a stable matching between two equally sized sets of elements given an ordering of preferences for each element. A matching is a bijection from the elements of one set to the elements of the other set. A matching is not stable if: In other words, a matching is stable when there does not exist any pair (A, B) which both prefer each other to their current partner under the matching.
Lee distanceIn coding theory, the Lee distance is a distance between two strings and of equal length n over the q-ary alphabet {0, 1, ..., q − 1} of size q ≥ 2. It is a metric defined as If q = 2 or q = 3 the Lee distance coincides with the Hamming distance, because both distances are 0 for two single equal symbols and 1 for two single non-equal symbols. For q > 3 this is not the case anymore; the Lee distance between single letters can become bigger than 1. However, there exists a Gray isometry (weight-preserving bijection) between with the Lee weight and with the Hamming weight.
Projectively extended real lineIn real analysis, the projectively extended real line (also called the one-point compactification of the real line), is the extension of the set of the real numbers, , by a point denoted ∞. It is thus the set with the standard arithmetic operations extended where possible, and is sometimes denoted by or The added point is called the point at infinity, because it is considered as a neighbour of both ends of the real line. More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded.