Concept

Projectively extended real line

In real analysis, the projectively extended real line (also called the one-point compactification of the real line), is the extension of the set of the real numbers, , by a point denoted ∞. It is thus the set with the standard arithmetic operations extended where possible, and is sometimes denoted by or The added point is called the point at infinity, because it is considered as a neighbour of both ends of the real line. More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded. The projectively extended real line may be identified with a real projective line in which three points have been assigned the specific values 0, 1 and ∞. The projectively extended real number line is distinct from the affinely extended real number line, in which +∞ and −∞ are distinct. Unlike most mathematical models of numbers, this structure allows division by zero: for nonzero a. In particular, 1 / 0 = ∞ and 1 / ∞ = 0, making the reciprocal function 1 / x a total function in this structure. The structure, however, is not a field, and none of the binary arithmetic operations are total – for example, 0 ⋅ ∞ is undefined, even though the reciprocal is total. It has usable interpretations, however – for example, in geometry, the slope of a vertical line is ∞. The projectively extended real line extends the field of real numbers in the same way that the Riemann sphere extends the field of complex numbers, by adding a single point called conventionally ∞. In contrast, the affinely extended real number line (also called the two-point compactification of the real line) distinguishes between +∞ and −∞. The order relation cannot be extended to in a meaningful way. Given a number a ≠ ∞, there is no convincing argument to define either a > ∞ or that a < ∞. Since ∞ can't be compared with any of the other elements, there's no point in retaining this relation on . However, order on is used in definitions in .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related people (1)
Related concepts (16)
Riemann sphere
In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity. With the Riemann model, the point is near to very large numbers, just as the point is near to very small numbers. The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as well-behaved.
Indeterminate form
In calculus and other branches of mathematical analysis, when the limit of the sum, difference, product, quotient or power of two functions is taken, it may often be possible to simply add, subtract, multiply, divide or exponentiate the corresponding limits of these two functions respectively. However, there are occasions where it is unclear what the sum, difference, product or power of these two limits ought to be. For example, it is unclear what the following expressions ought to evaluate to: These seven expressions are known as indeterminate forms.
Wheel theory
A wheel is a type of algebra (in the sense of universal algebra) where division is always defined. In particular, division by zero is meaningful. The real numbers can be extended to a wheel, as can any commutative ring. The term wheel is inspired by the topological picture of the real projective line together with an extra point ⊥ (bottom element) such as . A wheel can be regarded as the equivalent of a commutative ring (and semiring) where addition and multiplication are not a group but respectively a commutative monoid and a commutative monoid with involution.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.