Selective photoluminescence spectroscopy of shallow levels in wide band gap semiconductors
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We show that constant-Fermi-level ab initio molecular dynamics can be used as a computer-based tool to reveal and control relevant defects in semiconductor materials. In this scheme, the Fermi level can be set at any position within the band gap during the ...
Controlling the excitonic optical properties of room temperature semiconductors using time-dependent perturbations is key to future optoelectronic applications. The optical Stark effect in bulk and low-dimensional materials has recently shown exciton shift ...
American Association for the Advancement of Science (AAAS)2019
The strength of the electron-hole interaction in bulk semiconductors is not only determined by the dielectric environment, but also depends on the presence of other quasiparticles - free charge carriers or phonons - that populate the system. In the former ...
This thesis is dedicated to the study of various aspects of the electronic structure of two-dimensional transition metal dichalcogenides (TMDs) of chemical composition MX2 (where M is a transition metal atom and X= S, Se, Te), using a combination of \te ...
The absorption of multiple photons when there is no resonant intermediate state is a well-known nonlinear process in atomic vapours, dyes and semiconductors. The N-photon absorption (NPA) rate for donors in semiconductors scales proportionally from hydroge ...
This thesis is dedicated to the growth and characterization of the optoelectronic properties of III-V semiconductor nanostructures namely nanowires and nanoscale membranes. III-V semiconductors possess promising intrinsic properties like direct band gap, h ...
The growing research on two-dimensional materials reveals their exceptional physical properties and enormous potential for future applications and investigation of advanced physics phenomena. They represent the ultimate limit in terms of active channel thi ...
Over the past 20 years, III-nitrides (GaN, AlN, InN and their alloys) have proven to be an excellent material group for electronic devices, in particular, for high electron mobility transistors (HEMTs) operating at high frequency and high power. This is ma ...
Wannier tight-binding models are effective models constructed from first-principles calculations. As such, they bridge a gap between the accuracy of first-principles calculations and the computational simplicity of effective models. In this work, we extend ...
Precise control over the electrical conductivity of semiconductor nanowires is a crucial prerequisite for implementation of these nanostructures into novel electronic and optoelectronic devices. Advances in our understanding of doping mechanisms in nanowir ...