AlInN/GaN a suitable HEMT device for extremely high power high frequency applications
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Performance improvement by device scaling has been the prevailing method in the semiconductor industry over the past four decades. However, current silicon transistor technology is approaching a fundamental limit where scaling does not improve device perfo ...
In this work we present uni-directional GaN-on-Si MOSHEMTs with state-of-the-art reverse-blocking performance. We integrated tri-anode Schottky barrier diodes (SBDs) with slanted tri-gate field plates (FPs) as the drain electrode, and achieved a high rever ...
GaN-based heterostructures, and here, particularly, the lattice matched InAlN/GaN configuration, possess high chemical and thermal stability. Concentrating on refractory metal contact schemes, HEMT devices have been fabricated allowing high-temperature 1-M ...
GaN based electronic devices have progressed rapidly over the past decades and are nowadays starting to replace Si and classical III-V semiconductors in power electronics systems and high power RF amplifiers. AlGaN/GaN heterostructures have been, until rec ...
Multi-gate devices e.g. gate-all-around (GAA) Si nanowires and FinFETs are promising can- didates for aggressive CMOS downscaling. Optimum subthreshold slope, immunity against short channel effect and optimized power consumption are the major benefits of s ...
We report the characterization of GaN high electron mobility transistors (HEMTs) using a new AlN-capped AlInN/GaN epilayer structure developed to achieve high current densities and reduced gate leakage currents. Devices with gate lengths of 75 and 200 nm a ...
Semiconductor nanowires are an emerging class of materials with great potential for applications in future electronic devices. The small footprint and the large charge-carrier mobilities of nanowires make them potentially useful for applications with high- ...
This thesis aims at the site-specific realization of self-assembled field-effect transistors (FETs) based on semiconducting Zinc oxide NWs and their application towards chemical and bio-sensing in liquid medium. At first, a solution based growth method for ...
Two-dimensional (2D) semiconductors such as single- and few-layer molybdenum disulphide(MoS2) are promising building blocks for prospect flexible, transparent and low power electronics. Due to an electronic bandgap of the order of ~1.8 eV and atomic-scale ...
Enhanced performance in AlGaN/GaN Schottky barrier diodes (SBDs) is investigated using a nanowire hybrid tri-anode structure that integrates 3-D Schottky junctions with tri-gate transistors. The fabricated SBDs presented an increased output current density ...
Institute of Electrical and Electronics Engineers2016