Situated cognitionSituated cognition is a theory that posits that knowing is inseparable from doing by arguing that all knowledge is situated in activity bound to social, cultural and physical contexts. Situativity theorists suggest a model of knowledge and learning that requires thinking on the fly rather than the storage and retrieval of conceptual knowledge. In essence, cognition cannot be separated from the context. Instead knowing exists, in situ, inseparable from context, activity, people, culture, and language.
CrossmodalCrossmodal perception or cross-modal perception is perception that involves interactions between two or more different sensory modalities. Examples include synesthesia, sensory substitution and the McGurk effect, in which vision and hearing interact in speech perception. Crossmodal perception, crossmodal integration and cross modal plasticity of the human brain are increasingly studied in neuroscience to gain a better understanding of the large-scale and long-term properties of the brain.
Body of lightThe body of light, sometimes called the 'astral body' or the 'subtle body,' is a "quasi material" aspect of the human body, being neither solely physical nor solely spiritual, posited by a number of philosophers, and elaborated on according to various esoteric, occult, and mystical teachings. Other terms used for this body include body of glory, spirit-body, luciform body, augoeides ('radiant body'), astroeides ('starry or sidereal body'), and celestial body.
QualiaIn philosophy of mind, qualia (ˈkwɑːliə,_ˈkweɪ-; singular form: quale -li) are defined as instances of subjective, conscious experience. The term qualia derives from the Latin neuter plural form (qualia) of the Latin adjective quālis (ˈkwaːlɪs) meaning "of what sort" or "of what kind" in relation to a specific instance, such as "what it is like to taste a specific applethis particular apple now". Examples of qualia include the perceived sensation of pain of a headache, the taste of wine, and the redness of an evening sky.
Balance disorderA balance disorder is a disturbance that causes an individual to feel unsteady, for example when standing or walking. It may be accompanied by feelings of giddiness, or wooziness, or having a sensation of movement, spinning, or floating. Balance is the result of several body systems working together: the visual system (eyes), vestibular system (ears) and proprioception (the body's sense of where it is in space). Degeneration or loss of function in any of these systems can lead to balance deficits.
Inertial frame of referenceIn classical physics and special relativity, an inertial frame of reference (also called inertial space, or Galilean reference frame) is a frame of reference not undergoing any acceleration. It is a frame in which an isolated physical object—an object with zero net force acting on it—is perceived to move with a constant velocity or, equivalently, it is a frame of reference in which Newton's first law of motion holds.
NeuroimagingNeuroimaging is the use of quantitative (computational) techniques to study the structure and function of the central nervous system, developed as an objective way of scientifically studying the healthy human brain in a non-invasive manner. Increasingly it is also being used for quantitative research studies of brain disease and psychiatric illness. Neuroimaging is highly multidisciplinary involving neuroscience, computer science, psychology and statistics, and is not a medical specialty.
Visual perceptionVisual perception is the ability to interpret the surrounding environment through photopic vision (daytime vision), color vision, scotopic vision (night vision), and mesopic vision (twilight vision), using light in the visible spectrum reflected by objects in the environment. This is different from visual acuity, which refers to how clearly a person sees (for example "20/20 vision"). A person can have problems with visual perceptual processing even if they have 20/20 vision.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Functional neuroimagingFunctional neuroimaging is the use of neuroimaging technology to measure an aspect of brain function, often with a view to understanding the relationship between activity in certain brain areas and specific mental functions. It is primarily used as a research tool in cognitive neuroscience, cognitive psychology, neuropsychology, and social neuroscience.