**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction

Abstract

The interaction between a fluid and a poroelastic structure is a complex problem that couples the Navier-Stokes equations with the Biot system. The finite element approximation of this problem is involved due to the fact that both subproblems are indefinite. In this work, we first design residual-based stabilization techniques for the Biot system, motivated by the variational multiscale approach. Then, we state the monolithic Navier-Stokes/Biot system with the appropriate transmission conditions at the interface. For the solution of the coupled system, we adopt both monolithic solvers and heterogeneous domain decomposition strategies. Different domain decomposition methods are considered and their convergence is analyzed for a simplified problem. We compare the efficiency of all the methods on a test problem that exhibits a large added-mass effect, as it happens in hemodynamics applications. (C) 2009 Elsevier Inc. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (37)

Related concepts (32)

Related MOOCs (15)

Navier–Stokes equations

The Navier–Stokes equations (nævˈjeː_stəʊks ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes). The Navier–Stokes equations mathematically express momentum balance and conservation of mass for Newtonian fluids.

Fluid

In physics, a fluid is a liquid, gas, or other material that continuously deforms (flows) under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear force applied to them. Although the term fluid generally includes both the liquid and gas phases, its definition varies among branches of science. Definitions of solid vary as well, and depending on field, some substances can be both fluid and solid.

Fluid dynamics

In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

The thesis is dedicated to the study of two main partial differential equations (PDEs) in fluid dynamics: the Navier-Stokes equations, which describe the motion of incompressible fluids, and the transport equation with divergence-free velocity fields, whic ...

A space-time adaptive algorithm to solve the motion of a rigid disk in an incompressible Newtonian fluid is presented, which allows collision or quasi-collision processes to be computed with high accuracy. In particular, we recover the theoretical result p ...

In this paper, a dissipative version of the Benjamin–Ono dynamics is shown to faithfully model the collective evolution of swarms of scalar Cauchy stochastic agents obeying a follow-the-leader interaction rule. Due to the Hilbert transform, the swarm dynam ...

2021