EquationIn mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation. Solving an equation containing variables consists of determining which values of the variables make the equality true.
Lie superalgebraIn mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a Z2grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry. In most of these theories, the even elements of the superalgebra correspond to bosons and odd elements to fermions (but this is not always true; for example, the BRST supersymmetry is the other way around).
Square-integrable functionIn mathematics, a square-integrable function, also called a quadratically integrable function or function or square-summable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value is finite. Thus, square-integrability on the real line is defined as follows. One may also speak of quadratic integrability over bounded intervals such as for . An equivalent definition is to say that the square of the function itself (rather than of its absolute value) is Lebesgue integrable.
Riemann integralIn the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göttingen in 1854, but not published in a journal until 1868. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration, or simulated using Monte Carlo Integration.
Poisson algebraIn mathematics, a Poisson algebra is an associative algebra together with a Lie bracket that also satisfies Leibniz's law; that is, the bracket is also a derivation. Poisson algebras appear naturally in Hamiltonian mechanics, and are also central in the study of quantum groups. Manifolds with a Poisson algebra structure are known as Poisson manifolds, of which the symplectic manifolds and the Poisson–Lie groups are a special case. The algebra is named in honour of Siméon Denis Poisson.
Lie algebroidIn mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra. Lie algebroids play a similar same role in the theory of Lie groupoids that Lie algebras play in the theory of Lie groups: reducing global problems to infinitesimal ones. Indeed, any Lie groupoid gives rise to a Lie algebroid, which is the vertical bundle of the source map restricted at the units.
Locally integrable functionIn mathematics, a locally integrable function (sometimes also called locally summable function) is a function which is integrable (so its integral is finite) on every compact subset of its domain of definition. The importance of such functions lies in the fact that their function space is similar to Lp spaces, but its members are not required to satisfy any growth restriction on their behavior at the boundary of their domain (at infinity if the domain is unbounded): in other words, locally integrable functions can grow arbitrarily fast at the domain boundary, but are still manageable in a way similar to ordinary integrable functions.
Real form (Lie theory)In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra g0 is called a real form of a complex Lie algebra g if g is the complexification of g0: The notion of a real form can also be defined for complex Lie groups. Real forms of complex semisimple Lie groups and Lie algebras have been completely classified by Élie Cartan. Using the Lie correspondence between Lie groups and Lie algebras, the notion of a real form can be defined for Lie groups.
Affine Lie algebraIn mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras.
Stochastic geometryIn mathematics, stochastic geometry is the study of random spatial patterns. At the heart of the subject lies the study of random point patterns. This leads to the theory of spatial point processes, hence notions of Palm conditioning, which extend to the more abstract setting of random measures. There are various models for point processes, typically based on but going beyond the classic homogeneous Poisson point process (the basic model for complete spatial randomness) to find expressive models which allow effective statistical methods.