In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra g0 is called a real form of a complex Lie algebra g if g is the complexification of g0: The notion of a real form can also be defined for complex Lie groups. Real forms of complex semisimple Lie groups and Lie algebras have been completely classified by Élie Cartan. Using the Lie correspondence between Lie groups and Lie algebras, the notion of a real form can be defined for Lie groups. In the case of linear algebraic groups, the notions of complexification and real form have a natural description in the language of algebraic geometry. List of simple Lie groups Just as complex semisimple Lie algebras are classified by Dynkin diagrams, the real forms of a semisimple Lie algebra are classified by Satake diagrams, which are obtained from the Dynkin diagram of the complex form by labeling some vertices black (filled), and connecting some other vertices in pairs by arrows, according to certain rules. It is a basic fact in the structure theory of complex semisimple Lie algebras that every such algebra has two special real forms: one is the compact real form and corresponds to a compact Lie group under the Lie correspondence (its Satake diagram has all vertices blackened), and the other is the split real form and corresponds to a Lie group that is as far as possible from being compact (its Satake diagram has no vertices blackened and no arrows). In the case of the complex special linear group SL(n,C), the compact real form is the special unitary group SU(n) and the split real form is the real special linear group SL(n,R). The classification of real forms of semisimple Lie algebras was accomplished by Élie Cartan in the context of Riemannian symmetric spaces. In general, there may be more than two real forms. Suppose that g0 is a semisimple Lie algebra over the field of real numbers. By Cartan's criterion, the Killing form is nondegenerate, and can be diagonalized in a suitable basis with the diagonal entries +1 or −1.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MATH-429: Representation Theory II - Lie groups and algebras
This is a standard course on Lie groups, Lie algebras and their representations.
MATH-492: Representation theory of semisimple lie algebras
We will establish the major results in the representation theory of semisimple Lie algebras over the field of complex numbers, and that of the related algebraic groups.
MSE-100: Materials structure
Ce cours met en relation les différents niveaux de structuration de la matière avec les propriétés mécaniques, thermiques, électriques, magnétiques et optiques des matériaux. Des travaux pratiques en
Related publications (28)