Outerplanar graphIn graph theory, an outerplanar graph is a graph that has a planar drawing for which all vertices belong to the outer face of the drawing. Outerplanar graphs may be characterized (analogously to Wagner's theorem for planar graphs) by the two forbidden minors K4 and K2,3, or by their Colin de Verdière graph invariants. They have Hamiltonian cycles if and only if they are biconnected, in which case the outer face forms the unique Hamiltonian cycle. Every outerplanar graph is 3-colorable, and has degeneracy and treewidth at most 2.
Distance-hereditary graphIn graph theory, a branch of discrete mathematics, a distance-hereditary graph (also called a completely separable graph) is a graph in which the distances in any connected induced subgraph are the same as they are in the original graph. Thus, any induced subgraph inherits the distances of the larger graph. Distance-hereditary graphs were named and first studied by , although an equivalent class of graphs was already shown to be perfect in 1970 by Olaru and Sachs.
Four color theoremIn mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. Adjacent means that two regions share a common boundary curve segment, not merely a corner where three or more regions meet. It was the first major theorem to be proved using a computer. Initially, this proof was not accepted by all mathematicians because the computer-assisted proof was infeasible for a human to check by hand.
Altered chordAn altered chord is a chord that replaces one or more notes from the diatonic scale with a neighboring pitch from the chromatic scale. By the broadest definition, any chord with a non-diatonic chord tone is an altered chord. The simplest example of altered chords is the use of borrowed chords, chords borrowed from the parallel key, and the most common is the use of secondary dominants. As Alfred Blatter explains, "An altered chord occurs when one of the standard, functional chords is given another quality by the modification of one or more components of the chord.
Extended chordIn music, extended chords are certain chords (built from thirds) or triads with notes extended, or added, beyond the seventh. Ninth, eleventh, and thirteenth chords are extended chords. The thirteenth is the farthest extension diatonically possible as, by that point, all seven tonal degrees are represented within the chord (the next extension, the fifteenth, is the same as the root of the chord). In practice however, extended chords do not typically use all the chord members; when it is not altered, the fifth is often omitted, as are notes between the seventh and the highest note (i.
Chord (music)A chord, in music, is any harmonic set of pitches/frequencies consisting of multiple notes (also called "pitches") that are heard as if sounding simultaneously. For many practical and theoretical purposes, arpeggios and other types of broken chords (in which the chord tones are not sounded simultaneously) may also be considered as chords in the right musical context. In tonal Western classical music (music with a tonic key or "home key"), the most frequently encountered chords are triads, so called because they consist of three distinct notes: the root note, and intervals of a third and a fifth above the root note.
Graph propertyIn graph theory, a graph property or graph invariant is a property of graphs that depends only on the abstract structure, not on graph representations such as particular labellings or drawings of the graph. While graph drawing and graph representation are valid topics in graph theory, in order to focus only on the abstract structure of graphs, a graph property is defined to be a property preserved under all possible isomorphisms of a graph. In other words, it is a property of the graph itself, not of a specific drawing or representation of the graph.
Fractional coloringFractional coloring is a topic in a young branch of graph theory known as fractional graph theory. It is a generalization of ordinary graph coloring. In a traditional graph coloring, each vertex in a graph is assigned some color, and adjacent vertices — those connected by edges — must be assigned different colors. In a fractional coloring however, a set of colors is assigned to each vertex of a graph. The requirement about adjacent vertices still holds, so if two vertices are joined by an edge, they must have no colors in common.
Chord progressionIn a musical composition, a chord progression or harmonic progression (informally chord changes, used as a plural) is a succession of chords. Chord progressions are the foundation of harmony in Western musical tradition from the common practice era of Classical music to the 21st century. Chord progressions are the foundation of popular music styles (e.g., pop music, rock music), traditional music, as well as genres such as blues and jazz. In these genres, chord progressions are the defining feature on which melody and rhythm are built.
List coloringIn graph theory, a branch of mathematics, list coloring is a type of graph coloring where each vertex can be restricted to a list of allowed colors. It was first studied in the 1970s in independent papers by Vizing and by Erdős, Rubin, and Taylor. Given a graph G and given a set L(v) of colors for each vertex v (called a list), a list coloring is a choice function that maps every vertex v to a color in the list L(v). As with graph coloring, a list coloring is generally assumed to be proper, meaning no two adjacent vertices receive the same color.