List edge-coloringIn mathematics, list edge-coloring is a type of graph coloring that combines list coloring and edge coloring. An instance of a list edge-coloring problem consists of a graph together with a list of allowed colors for each edge. A list edge-coloring is a choice of a color for each edge, from its list of allowed colors; a coloring is proper if no two adjacent edges receive the same color. A graph G is k-edge-choosable if every instance of list edge-coloring that has G as its underlying graph and that provides at least k allowed colors for each edge of G has a proper coloring.
Definite assignment analysisIn computer science, definite assignment analysis is a data-flow analysis used by compilers to conservatively ensure that a variable or location is always assigned before it is used. In C and C++ programs, a source of particularly difficult-to-diagnose errors is the nondeterministic behavior that results from reading uninitialized variables; this behavior can vary between platforms, builds, and even from run to run. There are two common ways to solve this problem. One is to ensure that all locations are written before they are read.
Barre chordIn music, a barre chord (also spelled bar chord) is a type of chord on a guitar or other stringed instrument played by using one finger to press down multiple strings across a single fret of the fingerboard (like a bar pressing down the strings). Players often use this chording technique to play a chord that is not restricted by the tones of the guitar's open strings. For instance, if a guitar is tuned to regular concert pitch, with the open strings being E, A, D, G, B, E (from low to high), open chords must be based on one or more of these notes.
Polynomial-time reductionIn computational complexity theory, a polynomial-time reduction is a method for solving one problem using another. One shows that if a hypothetical subroutine solving the second problem exists, then the first problem can be solved by transforming or reducing it to inputs for the second problem and calling the subroutine one or more times. If both the time required to transform the first problem to the second, and the number of times the subroutine is called is polynomial, then the first problem is polynomial-time reducible to the second.
Open chordIn music for stringed instruments, especially guitar, an open chord (open-position chord) is a chord that includes one or more strings that are not fingered. An open string vibrates freely, whereas a fingered string will be partially dampened unless fingered with considerable pressure, which is difficult for beginner players. In an open chord, the unfingered strings are undampened, and the player is able to exert maximum pressure on the fretted strings, to avoid unwanted dampening.
Petersen graphIn the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring. Although the graph is generally credited to Petersen, it had in fact first appeared 12 years earlier, in a paper by .
Polynomial hierarchyIn computational complexity theory, the polynomial hierarchy (sometimes called the polynomial-time hierarchy) is a hierarchy of complexity classes that generalize the classes NP and co-NP. Each class in the hierarchy is contained within PSPACE. The hierarchy can be defined using oracle machines or alternating Turing machines. It is a resource-bounded counterpart to the arithmetical hierarchy and analytical hierarchy from mathematical logic. The union of the classes in the hierarchy is denoted PH.
Dead-code eliminationIn compiler theory, dead-code elimination (DCE, dead-code removal, dead-code stripping, or dead-code strip) is a compiler optimization to remove dead code (code that does not affect the program results). Removing such code has several benefits: it shrinks program size, an important consideration in some contexts, and it allows the running program to avoid executing irrelevant operations, which reduces its running time. It can also enable further optimizations by simplifying program structure.
Polynomial-time approximation schemeIn computer science (particularly algorithmics), a polynomial-time approximation scheme (PTAS) is a type of approximation algorithm for optimization problems (most often, NP-hard optimization problems). A PTAS is an algorithm which takes an instance of an optimization problem and a parameter ε > 0 and produces a solution that is within a factor 1 + ε of being optimal (or 1 – ε for maximization problems). For example, for the Euclidean traveling salesman problem, a PTAS would produce a tour with length at most (1 + ε)L, with L being the length of the shortest tour.
Assignment (computer science)In computer programming, an assignment statement sets and/or re-sets the value stored in the storage location(s) denoted by a variable name; in other words, it copies a value into the variable. In most imperative programming languages, the assignment statement (or expression) is a fundamental construct. Today, the most commonly used notation for this operation is x = expr (originally Superplan 1949–51, popularized by Fortran 1957 and C). The second most commonly used notation is x := expr (originally ALGOL 1958, popularised by Pascal).