Highly Reliable Carbon Nanotube Transistors with Patterned Gates and Molecular Gate Dielectric
Related publications (84)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Silicon has been, and continues to be, the material support of integrated circuit (IC) technology-the enabling tool of one of the most impressive technological, industrial and social revolution of mankind. Silicon (both in monocrystalline and polycrystalli ...
Complementary MOS device electrical performances are considerably affected by the degradation of the oxide lay- ers and Si/SiO2 interfaces. A general expression for electrically stressed MOS impedance has been derived and applied within the nonradiative mu ...
Institute of Electrical and Electronics Engineers2012
Semiconductor nanowires are an emerging class of materials with great potential for applications in future electronic devices. The small footprint and the large charge-carrier mobilities of nanowires make them potentially useful for applications with high- ...
Technology scaling improves the energy, performance, and area of the digital circuits. With further scaling into sub-45nm regime, we are moving toward very low supply (VDD) and threshold voltages (VT), smaller VDD/VT ratio, high leakage current, and large ...
The increase of components density in advanced microelectronics is practically dictated by the device size and the achievable pitch between the devices. Scaling down dimensions of devices and progress in the circuit design allowed following Moore's law dur ...
We report on p- and n-type organic self-assembled monolayer held effect transistors. On the base of quaterthiophene and fullerene units, multifunctional molecules were synthesized, which have the ability to self-assemble and provide multifunctional monolay ...
Silicon technology has advanced at exponential rates both in performances and productivity through the past four decades. However the limit of CMOS technology seems to be closer and closer and in the future we might see an increasing number of hybrid appro ...
This thesis aims at the site-specific realization of self-assembled field-effect transistors (FETs) based on semiconducting Zinc oxide NWs and their application towards chemical and bio-sensing in liquid medium. At first, a solution based growth method for ...
We report a novel resist-assisted dielectrophoresis method for single-walled carbon nanotube (SWCNT) assembly. It provides nanoscale control of the location, density, orientation and shape of individual SWCNTs. Sub-50 nm accuracy and a yield higher than 85 ...
An improved method for self-assembly fabrication of single-walled carbon nanotube (SWCNT) field effect transistors (FETs) is presented, combining the unique design of biased/floating potential electrode geometry and the technique of aligning CNTs by pre-de ...