**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Statistics Of Prime Divisors In Function Fields

Abstract

We show that the prime divisors of a random polynomial in F-q[t] are typically "Poisson distributed". This result is analogous to the result in Z of Granville [1]. Along the way, we use a sieve developed by Granville and Soundararajan [2] to give a simple proof of the Erdos-Kac theorem in the function field setting. This approach gives stronger results about the moments of the sequence {omega(f)}(f is an element of Fq)[t] than was previously known, where omega(f) is the number of prime divisors of f.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (34)

Related publications (32)

Ontological neighbourhood

Divisor

In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . In this case, one also says that is a multiple of An integer is divisible or evenly divisible by another integer if is a divisor of ; this implies dividing by leaves no remainder. An integer n is divisible by a nonzero integer m if there exists an integer k such that . This is written as Other ways of saying the same thing are that m divides n, m is a divisor of n, m is a factor of n, and n is a multiple of m.

Zero divisor

In abstract algebra, an element a of a ring R is called a left zero divisor if there exists a nonzero x in R such that ax = 0, or equivalently if the map from R to R that sends x to ax is not injective. Similarly, an element a of a ring is called a right zero divisor if there exists a nonzero y in R such that ya = 0. This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor.

Function field of an algebraic variety

In algebraic geometry, the function field of an algebraic variety V consists of objects which are interpreted as rational functions on V. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions.

Maryna Viazovska, Nihar Prakash Gargava, Vlad Serban

We examine the moments of the number of lattice points in a fixed ball of volume $V$ for lattices in Euclidean space which are modules over the ring of integers of a number field $K$. In particular, denoting by $ω_K$ the number of roots of unity in $K$, we ...

Thomas Mountford, Michael Cranston

In this paper we use the Riemann zeta distribution to give a new proof of the Erdos-Kac Central Limit Theorem. That is, if zeta(s) = Sigma(n >= 1) (1)(s)(n) , s > 1, then we consider the random variable X-s with P(X-s = n) = (1) (zeta) ( ...

Zsolt Patakfalvi, Joseph Allen Waldron

We use the theory of foliations to study the relative canonical divisor of a normalized inseparable base-change. Our main technical theorem states that it is linearly equivalent to a divisor with positive integer coefficients divisible by p - 1. We deduce ...