In abstract algebra, an element a of a ring R is called a left zero divisor if there exists a nonzero x in R such that ax = 0, or equivalently if the map from R to R that sends x to ax is not injective. Similarly, an element a of a ring is called a right zero divisor if there exists a nonzero y in R such that ya = 0. This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor. An element a that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero x such that ax = 0 may be different from the nonzero y such that ya = 0). If the ring is commutative, then the left and right zero divisors are the same. An element of a ring that is not a left zero divisor (respectively, not a right zero divisor) is called left regular or left cancellable (respectively, right regular or right cancellable). An element of a ring that is left and right cancellable, and is hence not a zero divisor, is called regular or cancellable, or a non-zero-divisor. A zero divisor that is nonzero is called a nonzero zero divisor or a nontrivial zero divisor. A non-zero ring with no nontrivial zero divisors is called a domain. In the ring , the residue class is a zero divisor since . The only zero divisor of the ring of integers is . A nilpotent element of a nonzero ring is always a two-sided zero divisor. An idempotent element of a ring is always a two-sided zero divisor, since . The ring of n × n matrices over a field has nonzero zero divisors if n ≥ 2. Examples of zero divisors in the ring of 2 × 2 matrices (over any nonzero ring) are shown here: A direct product of two or more nonzero rings always has nonzero zero divisors. For example, in with each nonzero, , so is a zero divisor. Let be a field and be a group. Suppose that has an element of finite order . Then in the group ring one has , with neither factor being zero, so is a nonzero zero divisor in . Consider the ring of (formal) matrices with and . Then and .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.