ConsistencyIn classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead.
SemanticsSemantics () is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy, linguistics and computer science. In English, the study of meaning in language has been known by many names that involve the Ancient Greek word σῆμα (sema, "sign, mark, token"). In 1690, a Greek rendering of the term semiotics, the interpretation of signs and symbols, finds an early allusion in John Locke's An Essay Concerning Human Understanding: The third Branch may be called σημειωτική [simeiotikí, "semiotics"], or the Doctrine of Signs, the most usual whereof being words, it is aptly enough termed also λογικὴ, Logick.
Variable starA variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes eclipses it.
Computational problemIn theoretical computer science, a computational problem is a problem that may be solved by an algorithm. For example, the problem of factoring "Given a positive integer n, find a nontrivial prime factor of n." is a computational problem. A computational problem can be viewed as a set of instances or cases together with a, possibly empty, set of solutions for every instance/case. For example, in the factoring problem, the instances are the integers n, and solutions are prime numbers p that are the nontrivial prime factors of n.
Binary search algorithmIn computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search algorithm that finds the position of a target value within a sorted array. Binary search compares the target value to the middle element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found.
Operational semanticsOperational semantics is a category of formal programming language semantics in which certain desired properties of a program, such as correctness, safety or security, are verified by constructing proofs from logical statements about its execution and procedures, rather than by attaching mathematical meanings to its terms (denotational semantics).
Local consistencyIn constraint satisfaction, local consistency conditions are properties of constraint satisfaction problems related to the consistency of subsets of variables or constraints. They can be used to reduce the search space and make the problem easier to solve. Various kinds of local consistency conditions are leveraged, including node consistency, arc consistency, and path consistency. Every local consistency condition can be enforced by a transformation that changes the problem without changing its solutions.
P versus NP problemThe P versus NP problem is a major unsolved problem in theoretical computer science. In informal terms, it asks whether every problem whose solution can be quickly verified can also be quickly solved. The informal term quickly, used above, means the existence of an algorithm solving the task that runs in polynomial time, such that the time to complete the task varies as a polynomial function on the size of the input to the algorithm (as opposed to, say, exponential time).
Nazi human experimentationNazi human experimentation was a series of medical experiments on prisoners by Nazi Germany in its concentration camps mainly between 1942 and 1945. There were at least 15,754 documented victims from a variety of nationalities and age groups, although the plurality were young adults at the time of the experiment. Although most victims survived, many suffered disability as a result. Nazi physicians and their assistants forced prisoners into participating; they did not willingly volunteer and no consent was given for the procedures.
Denotational semanticsIn computer science, denotational semantics (initially known as mathematical semantics or Scott–Strachey semantics) is an approach of formalizing the meanings of programming languages by constructing mathematical objects (called denotations) that describe the meanings of expressions from the languages. Other approaches providing formal semantics of programming languages include axiomatic semantics and operational semantics. Broadly speaking, denotational semantics is concerned with finding mathematical objects called domains that represent what programs do.