In constraint satisfaction, local consistency conditions are properties of constraint satisfaction problems related to the consistency of subsets of variables or constraints. They can be used to reduce the search space and make the problem easier to solve. Various kinds of local consistency conditions are leveraged, including node consistency, arc consistency, and path consistency.
Every local consistency condition can be enforced by a transformation that changes the problem without changing its solutions. Such a transformation is called constraint propagation. Constraint propagation works by reducing domains of variables, strengthening constraints, or creating new ones. This leads to a reduction of the search space, making the problem easier to solve by some algorithms. Constraint propagation can also be used as an unsatisfiability checker, incomplete in general but complete in some particular cases.
Local consistency conditions can be grouped into various classes. The original local consistency conditions require that every consistent assignment can be consistently extended to another variable. Directional consistency only requires this condition to be satisfied when the other variable is higher than the ones in the assignment, according to a given order. Relational consistency includes extensions to more than one variable, but this extension is only required to satisfy a given constraint or set of constraints.
In this article, a constraint satisfaction problem is defined as a set of variables, a set of domains, and a set of constraints. Variables and domains are associated: the domain of a variable contains all values the variable can take.
A constraint is composed of a sequence of variables, called its scope, and a set of their evaluations, which are the evaluations satisfying the constraint.
The constraint satisfaction problems referred to in this article are assumed to be in a special form. A problem is in normalized form, respectively regular form, if every sequence of variables is the scope of at most one constraint or exactly one constraint.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables, which is solved by constraint satisfaction methods. CSPs are the subject of research in both artificial intelligence and operations research, since the regularity in their formulation provides a common basis to analyze and solve problems of many seemingly unrelated families.
Constraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clauses. An example of a clause including a constraint is . In this clause, is a constraint; A(X,Y), B(X), and C(Y) are literals as in regular logic programming. This clause states one condition under which the statement A(X,Y) holds: X+Y is greater than zero and both B(X) and C(Y) are true.
In artificial intelligence and operations research, constraint satisfaction is the process of finding a solution through a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region. The techniques used in constraint satisfaction depend on the kind of constraints being considered.
Introduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.
This course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorith
Explores memory consistency in multiprocessor systems, discussing coherence, consistency models, and the trade-offs between ordering constraints and performance.
For safety-critical black-box optimization tasks, observations of the constraints and the objective are often noisy and available only for the feasible points. We propose an approach based on log barriers to find a local solution of a non-convex non-smooth ...
We prove a conjecture of Lecouvey, which proposes a closed, positive combinatorial formula for symplectic Kostka-Foulkes polynomials, in the case of rows of arbitrary weight. To show this, we construct a new algorithm for computing cocyclage in terms of wh ...
Effective collaboration in multi-robot systems requires accurate and robust estimation of relative localization: from cooperative manipulation to collaborative sensing, and including cooperative exploration or cooperative transportation. This paper introdu ...