Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis is dedicated to the study of various aspects of the electronic structure of two-dimensional transition metal dichalcogenides (TMDs) of chemical composition MX2 (where M is a transition metal atom and X= S, Se, Te), using a combination of \te ...
Using blocking capacitors in biomedical stimulators is important to the safety of the developed systems. However, the capacitors should be large enough in order to minimize the required voltage headroom. On the other hand, integrating large capacitors of f ...
In this thesis, angular resolved photoemission spectroscopy (ARPES) is used to study the electronic structure of different two-dimensional electron systems (2DES). This technique is very surface sensitive and the most direct method to probe the surface ban ...
Single-layer transition metal dichalcogenide WSe2 has recently attracted a lot of attention because it is a 2D semiconductor with a direct band gap. Due to low doping levels, it is intrinsic and shows ambipolar transport. This opens up the possibility to r ...
The time-window for processing electron spin information (spintronics) in solid-state quantum electronic devices is determined by the spin-lattice and spin-spin relaxation times of electrons. Minimizing the effects of spin-orbit coupling and the local magn ...
The ability of the phase-field-crystal (PFC) model to quantitatively predict atomistic defect structures in crystalline solids is addressed. First, general aspects of the PFC model are discussed within the context of obtaining quantitative results in solid ...
Knowledge of the atomic-level structure is key to understanding and predicting properties of materials. X-ray diffraction (XRD) is the methods of choice for structures containing well-defined long-range order. However, many materials contain various degree ...
The majority of interactions in solids strongly depend on the interatomic distances. The application of pressure changes the lattice parameters and modifies the electronic and the phononic energy spectra of a material avoiding some of the undesirable effec ...
We present a first-principles study of the temperature- and density-dependent intrinsic electrical resistivity of graphene. We use density-functional theory and density-functional perturbation theory together with very accurate Wannier interpolations to co ...
The importance of configurational, vibrational, and electronic excitations in crystalline solids of technological interest makes a rigorous treatment of thermal excitations an essential ingredient in first-principles models of materials behavior. This cont ...