Publication

High frequency self-oscillating current switching for a fully integrated fail-safe stimulator output stage

Alexandre Schmid, Reza Ranjandish
2016
Conference paper
Abstract

Using blocking capacitors in biomedical stimulators is important to the safety of the developed systems. However, the capacitors should be large enough in order to minimize the required voltage headroom. On the other hand, integrating large capacitors of few micro-Farads alongside the stimulator is almost impossible in implantable systems. High frequency current switching is a method that enables reducing the size of blocking capacitors. However, this method needs high-frequency square pulses, which is power consuming for the stimulators. In addition, since the frequency of high-frequency pulses is fixed, the voltage headroom required to support the blocking capacitor is not bounded. The larger the amplitude of the stimulation current, the higher the voltage headroom becomes. In this paper, an improved high-frequency current-switching method is proposed to overcome the mentioned drawbacks of the original high-frequency current-switching method. The proposed method is designed, simulated and validated using a 0.18 mu m high-voltage SOI technology provided by XFAB.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Capacitor types
Capacitors are manufactured in many styles, forms, dimensions, and from a large variety of materials. They all contain at least two electrical conductors, called plates, separated by an insulating layer (dielectric). Capacitors are widely used as parts of electrical circuits in many common electrical devices. Capacitors, together with resistors and inductors, belong to the group of passive components in electronic equipment.
Film capacitor
Film capacitors, plastic film capacitors, film dielectric capacitors, or polymer film capacitors, generically called film caps as well as power film capacitors, are electrical capacitors with an insulating plastic film as the dielectric, sometimes combined with paper as carrier of the electrodes. The dielectric films, depending on the desired dielectric strength, are drawn in a special process to an extremely thin thickness, and are then provided with electrodes.
Electrolytic capacitor
An electrolytic capacitor is a polarized capacitor whose anode or positive plate is made of a metal that forms an insulating oxide layer through anodization. This oxide layer acts as the dielectric of the capacitor. A solid, liquid, or gel electrolyte covers the surface of this oxide layer, serving as the cathode or negative plate of the capacitor. Because of their very thin dielectric oxide layer and enlarged anode surface, electrolytic capacitors have a much higher capacitance-voltage (CV) product per unit volume than ceramic capacitors or film capacitors, and so can have large capacitance values.
Show more
Related publications (128)

Hydrogen-induced tunable remanent polarization in a perovskite nickelate

Michele Kotiuga

Materials with field-tunable polarization are of broad interest to condensed matter sciences and solid-state device technologies. Here, using hydrogen (H) donor doping, we modify the room temperature metallic phase of a perovskite nickelate NdNiO3 into an ...
Nature Portfolio2024

Active Power Decoupling for Single-Phase Input-Series-Output-Parallel Solid-State Transformers

Drazen Dujic, Andrea Cervone, Tianyu Wei

Solid-state transformers with input-series outputparallel structures are being considered for a variety of applications requiring MVAC to LVDC conversion. Due to the singlephase AC/DC conversion at the input side, all floating cells of the solid-state tran ...
2024

3D Printing of Customizable Transient Bioelectronics and Sensors

Danick Briand, Nicolas Francis Fumeaux

Transient electronics have emerged as a new category of devices that can degrade after their functional lifetime, offering tremendous potential as disposable sensors, actuators, wearables, and implants. Additive manufacturing methods represent a promising ...
2024
Show more
Related MOOCs (2)
Electronics
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
Electronics
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.