Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Ultra-short echo-time proton single voxel spectra of rat brain were obtained on a 14.1 T 26 cm horizontal bore system. At this field, the fitted linewidth in the brain tissue of adult rats was about 11 Hz. New, separated resonances ascribed to phosphocholine, glycerophosphocholine and N-acetylaspartate were detected for the first time in vivo in the spectral range of 4.2-4.4 ppm. Moreover, improved separation of the resonances of lactate, alanine, gamma-aminobutyrate, glutamate and glutathione was observed. Metabolite concentrations were estimated by fitting in vivo spectra to a linear combination of simulated spectra of individual metabolites and a measured spectrum of macromolecules (LCModel). The calculated concentrations of metabolites were generally in excellent agreement with those obtained at 9.4 T. These initial results further indicated that increasing magnetic field strength to 14.1 T enhanced spectral resolution in H-1 NMR spectroscopy. This implies that the quantification of the neurochemical profile in rodent brain can be achieved with improved accuracy and precision. (C) 2008 Elsevier Inc. All rights reserved.
Fabio Nobile, Yoshihito Kazashi