Type safetyIn computer science, type safety and type soundness are the extent to which a programming language discourages or prevents type errors. Type safety is sometimes alternatively considered to be a property of facilities of a computer language; that is, some facilities are type-safe and their usage will not result in type errors, while other facilities in the same language may be type-unsafe and a program using them may encounter type errors.
Logical connectiveIn logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. They can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective can be used to join the two atomic formulas and , rendering the complex formula . Common connectives include negation, disjunction, conjunction, implication, and equivalence.
Semantic theory of truthA semantic theory of truth is a theory of truth in the philosophy of language which holds that truth is a property of sentences. The semantic conception of truth, which is related in different ways to both the correspondence and deflationary conceptions, is due to work by Polish logician Alfred Tarski. Tarski, in "On the Concept of Truth in Formal Languages" (1935), attempted to formulate a new theory of truth in order to resolve the liar paradox.
Propositional attitudeA propositional attitude is a mental state held by an agent or organism toward a proposition. In philosophy, propositional attitudes can be considered to be, neurally-realized causally efficacious content-bearing internal states (personal principles/values). Linguistically, propositional attitudes are denoted by a verb (e.g. "believed") governing an embedded "that" clause, for example, 'Sally believed that she had won'. Propositional attitudes are often assumed to be the fundamental units of thought and their contents, being propositions, are true or false from the perspective of the person.
Enumerated typeIn computer programming, an enumerated type (also called enumeration, enum, or factor in the R programming language, and a categorical variable in statistics) is a data type consisting of a set of named values called elements, members, enumeral, or enumerators of the type. The enumerator names are usually identifiers that behave as constants in the language. An enumerated type can be seen as a degenerate tagged union of unit type. A variable that has been declared as having an enumerated type can be assigned any of the enumerators as a value.
Propositional formulaIn propositional logic, a propositional formula is a type of syntactic formula which is well formed and has a truth value. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, or a sentential formula. A propositional formula is constructed from simple propositions, such as "five is greater than three" or propositional variables such as p and q, using connectives or logical operators such as NOT, AND, OR, or IMPLIES; for example: (p AND NOT q) IMPLIES (p OR q).
Knowledge by acquaintanceIn philosophy, a distinction is often made between two different kinds of knowledge: knowledge by acquaintance and knowledge by description. Whereas knowledge by description is something like ordinary propositional knowledge (e.g. "I know that snow is white"), knowledge by acquaintance is familiarity with a person, place, or thing, typically obtained through perceptual experience (e.g. "I know Sam", "I know the city of Bogotá", or "I know Russell's Problems of Philosophy").
Functional completenessIn logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT. A gate or set of gates which is functionally complete can also be called a universal gate / gates.