Enhanced thermal stability and spin-lattice relaxation rate of N@C-60 inside carbon nanotubes
Related publications (38)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nuclear magnetic resonance (NMR) was discovered in the first half of the 20th century. Today, neither analytical chemistry without NMR spectroscopy nor medical diagnostics without magnetic resonance imaging (MRI) could be imagined. A magnetic resonance sig ...
In numerous biological processes that constitute the base of living organisms, protein function is fundamentally related to internal dynamics occurring on μs-ms time scales that can give rise to chemical exchange contributions to relaxation. In a heteronuc ...
The lattice dynamics of solid He-4 has been explored using pulsed NMR methods to study the motion of He-3 impurities in the temperature range (0.05-0.20 K) where experiments have revealed anomalies attributed to superflow or unexpected viscoelastic propert ...
Relaxation processes induced by the antisymmetric part of the chemical shift anisotropy tensor (henceforth called anti-CSA) are usually neglected in NMR relaxation studies. It is shown here that anti-CSA components contribute to longitudinal relaxation rat ...
The quantum antiferromagnet Cu2Te2O5Br2 was investigated by NMR and nuclear quadrupole resonance (NQR). The Te-125 NMR investigation showed that there is a magnetic transition around 10.5 K at 9 T, in agreement with previous studies. From the divergence of ...
Nuclear magnetic resonance is a powerful nonintrusive technique for measuring diffusion coefficients through the use of pulsed field gradients. The main limitation to the application range of this method is imposed by the relaxation time constants of the m ...
Slow dynamic processes, such as biomolecular folding/unfolding, macromolecular diffusion, etc., can be conveniently monitored by solution-state two-dimensional (2D) NMR spectroscopy, provided the inverse of their rate constants does not exceed the nuclear ...
Nuclear magnetic relaxation in the presence of paramagnetic centres has gained increasing interest in recent years partly due to its importance for contrast agents in magnetic resonance imaging. Rational design of new more efficient agents is possible as a ...
Solid-state NMR can provide atomic-resolution information about protein motions occurring on a vast range of time scales under similar conditions to those of Xray diffraction studies and therefore offers a highly complementary approach to characterizing th ...
Among the different fields of research in nuclear magnetic resonance (NMR) which are currently investigated in the Laboratory of Biomolecular Magnetic Resonance (LRMB), two subjects that are closely related to each other are presented in this article. On t ...