Input/outputIn computing, input/output (I/O, i/o, or informally io or IO) is the communication between an information processing system, such as a computer, and the outside world, possibly a human or another information processing system. Inputs are the signals or data received by the system and outputs are the signals or data sent from it. The term can also be used as part of an action; to "perform I/O" is to perform an input or output operation. are the pieces of hardware used by a human (or other system) to communicate with a computer.
Channel capacityChannel capacity, in electrical engineering, computer science, and information theory, is the tight upper bound on the rate at which information can be reliably transmitted over a communication channel. Following the terms of the noisy-channel coding theorem, the channel capacity of a given channel is the highest information rate (in units of information per unit time) that can be achieved with arbitrarily small error probability. Information theory, developed by Claude E.
MIMOIn radio, multiple-input and multiple-output (MIMO) (ˈmaɪmoʊ,_ˈmiːmoʊ) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi 4), IEEE 802.11ac (Wi-Fi 5), HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Halley's methodIn numerical analysis, Halley's method is a root-finding algorithm used for functions of one real variable with a continuous second derivative. It is named after its inventor Edmond Halley. The algorithm is second in the class of Householder's methods, after Newton's method. Like the latter, it iteratively produces a sequence of approximations to the root; their rate of convergence to the root is cubic. Multidimensional versions of this method exist.
Methods of computing square rootsMethods of computing square roots are numerical analysis algorithms for approximating the principal, or non-negative, square root (usually denoted , , or ) of a real number. Arithmetically, it means given , a procedure for finding a number which when multiplied by itself, yields ; algebraically, it means a procedure for finding the non-negative root of the equation ; geometrically, it means given two line segments, a procedure for constructing their geometric mean. Every real number except zero has two square roots.
Cooperative diversityCooperative diversity is a cooperative multiple antenna technique for improving or maximising total network channel capacities for any given set of bandwidths which exploits user diversity by decoding the combined signal of the relayed signal and the direct signal in wireless multihop networks. A conventional single hop system uses direct transmission where a receiver decodes the information only based on the direct signal while regarding the relayed signal as interference, whereas the cooperative diversity considers the other signal as contribution.
Information theoryInformation theory is the mathematical study of the quantification, storage, and communication of information. The field was originally established by the works of Harry Nyquist and Ralph Hartley, in the 1920s, and Claude Shannon in the 1940s. The field, in applied mathematics, is at the intersection of probability theory, statistics, computer science, statistical mechanics, information engineering, and electrical engineering. A key measure in information theory is entropy.
Regular expressionA regular expression (shortened as regex or regexp; sometimes referred to as rational expression) is a sequence of characters that specifies a match pattern in text. Usually such patterns are used by string-searching algorithms for "find" or "find and replace" operations on strings, or for input validation. Regular expression techniques are developed in theoretical computer science and formal language theory. The concept of regular expressions began in the 1950s, when the American mathematician Stephen Cole Kleene formalized the concept of a regular language.
Closed-form expressionIn mathematics, an expression is in closed form if it is formed with constants, variables and a finite set of basic functions connected by arithmetic operations (+, −, ×, ÷, and integer powers) and function composition. Commonly, the allowed functions are nth root, exponential function, logarithm, and trigonometric functions . However, the set of basic functions depends on the context.