Time and spatially resolved photoluminescence of quantum structures with interfacial roughness: a theoretical description
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Semiconductor quantum wires (QWRs) are promising structures for optoelectronics applications, since they can provide quantum confinement for charge carriers in two dimensions. The advantage that they offer over conventional quantum wells (QWs) is due to th ...
Time-resolved up-conversion measurements of secondary emission from multiple quantum wells under resonant femtosecond excitation are reported for GaAs multiple quantum wells with qualitatively different interface disorder. The transient resonant Rayleigh s ...
The purpose of my thesis is to provide a theoretical analysis of the dynamics of optically excited carriers in semiconductor confined systems. In particular, I will focus the investigations on the effects due to the presence of a strong electron-hole Coulo ...
The spontaneous and stimulated emissions of strongly excited GaAs/(Ga,Al)As quantum wells are investigated in the one-dimensional optical amplifier geometry, using the variable-stripe-length method. The optical amplification and its saturation are studied ...
We compare several InGaN-based low-dimensional systems, by time-resolved photoluminescence (PL), versus temperature (8 < T < 280 K). We investigate the influence of growing or not an AlGaN barrier on top of the active layer. We address the differences betw ...
MBE-grown samples containing several GaN-AlxGa1-xN quantum wells of varying widths are studied by picosecond time-resolved photoluminescence. Extremely strong built-in electric fields are present in such systems, due to piezoelectric and pyroelectric effec ...
Ultrafast pump-probe measurements evidence the dynamical Stark splitting in the exciton absorption spectrum of a single semiconductor quantum well. The intensity of the Stark sidebands in the spectrum is comparable to the linear absorption and their separa ...
We report on microscopic photoluminescence and photoluminescence excitation of thin Al0.3Ga0.7As/GaAs quantum wells grown on exactly oriented (001) GaAs substrates. The experiments are done at low temperature by selectively exciting a few mu m(2) of the sa ...
The photoluminescence (PL) and PL-excitation (PLE) spectra of InyCa1-yAs/AlxGa1-xAs compressively strained V-groove quantum wires (QWR's) are compared to that of lattice-matched GaAs/AlyGa1-xAs QWR's with the same wire geometry. The PL is preferentially po ...
A study of the elastic exciton-exciton Coulomb scattering in a semiconductor quantum well is presented, including the interexciton exchange of carriers and the spin degrees of freedom. The theoretical results show that electron-electron and hole-hole excha ...