Annihilating polynomials of excellent quadratic forms
Related publications (48)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a sampling theory for a class of binary images with finite rate of innovation (FRI). Every image in our model is the restriction of \mathds1{p≤0} to the image plane, where \mathds1 denotes the indicator function and p is some r ...
Higher Green functions are real-valued functions of two variables on the upper half-plane, which are bi-invariant under the action of a congruence subgroup, have a logarithmic singularity along the diagonal, and satisfy the equation f = k(1−k) f ; here i ...
Many classical results concerning quadratic forms have been extended to Hermitian forms over algebras with involution. However, not much is known in the case of sesquilinear forms without any symmetry property. The present paper will establish a Witt cance ...
A recently found local-global principle for quadratic forms over function fields of curves over a complete discretely valued field is applied to the study of quadratic forms, sums of squares, and related field invariants. ...
We study the average of the product of the central values of two L-functions of modular forms f and g twisted by Dirichlet characters to a large prime modulus q. As our principal tools, we use spectral theory to develop bounds on averages of shifted convol ...
We propose an efficient variant for the initialisation step of quadratic sieving, the sieving step of the quadratic sieve and its variants, which is also used in sieving-based algorithms for computing class groups of quadratic fields. As an application we ...
Let k be a global field of characteristic not 2, and let f is an element of k[X] be an irreducible polynomial. We show that a non-degenerate quadratic space has an isometry with minimal polynomial f if and only if such an isometry exists over all the compl ...
A new approach stemming from the adiabatic-connection (AC) formalism is proposed to derive parameter-free double-hybrid (DH) exchange-correlation functionals. It is based on a quadratic form that models the integrand of the coupling parameter, whose compon ...
We derive a new upper bound on the diameter of a polyhedron , where . The bound is polynomial in and the largest absolute value of a sub-determinant of , denoted by . More precisely, we show that the diameter of is bounded by . If is bounded, then we show ...
We present a theoretical and numerical framework to compute bifurcations of equilibria and stability of slender elastic rods. The 3D kinematics of the rod is treated in a geometrically exact way by parameterizing the position of the centerline and making u ...