Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The photodegradation of phenol and dichloroacetic acid (DCAA) by \ce{BiVO4} was studied in the absence as well as presence of selected electron scavengers. The experiments were performed under the visible (vis) irradiation of aqueous solutions over a wide pH range (1--13). Phenol was photocatalytically degraded by \ce{BiVO4} into \emph{p}-benzoquinone below pH~3 and into an open-ring structure at pH~13. Methylene blue (MB) accelerated the reaction below the isoelectric point of \ce{BiVO4} and did not undergo significant degradation. In presence of \ce{H2O2}, phenol was rapidly degraded up to pH~9. The degradation rates are two orders of magnitude higher than in absence of electron scavenger. The degradation of dichloroacetic acid was only possible in presence of \ce{H2O2}. High initial concentrations of \ce{H2O2} inhibit the reaction and its consumption is very fast. Sequential additions of this sacrificial electron acceptor (SEA) enables the total degradation of a 1~mM DCAA solution.
Luis Guillermo Villanueva Torrijo, Annalisa De Pastina
Hubert Girault, Astrid Johana Olaya Avendano, Jorge Gustavo Uranga, Julieta Soledad Riva, Sara Natalia Moya Betancourt