Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The design procedure, realization and measurements of an implantable radiator for telemetry applications are presented. First, free space analysis allows the choice of the antenna typology with reduced computation time. Subsequently the antenna, inserted in a body phantom, is designed to take into account all the necessary electronic components, power supply and bio-compatible insulation so as to realize a complete implantable device. The conformal design has suitable dimensions for subcutaneous implantation (10 x 32.1 mm). The effect of different body phantoms is discussed. The radiator works in both the Medical Device Radiocommunication Service (MedRadio, 401-406 MHz) and the Industrial, Scientific and Medical (ISM, 2.4-2.5 GHz) bands. Simulated maximum gains attain and -28.8 and -18.5 dBi in the two desired frequency ranges, respectively, when the radiator is implanted subcutaneously in a homogenous cylindrical body phantom (80 x 110 mm) with muscle equivalent dielectric properties. Three antennas are realized and characterized in order to improve simulation calibration, electromagnetic performance, and to validate the repeatability of the manufacturing process. Measurements are also presented and a good correspondence with theoretical predictions is registered.
Sandro Carrara, Diego Ghezzi, Gian Luca Barbruni