BackscatterIn physics, backscatter (or backscattering) is the reflection of waves, particles, or signals back to the direction from which they came. It is usually a diffuse reflection due to scattering, as opposed to specular reflection as from a mirror, although specular backscattering can occur at normal incidence with a surface. Backscattering has important applications in astronomy, photography, and medical ultrasonography. The opposite effect is forward scatter, e.g. when a translucent material like a cloud diffuses sunlight, giving soft light.
Compton scatteringCompton scattering (also called the Compton effect) discovered by Arthur Holly Compton, is the scattering of a high frequency photon after an interaction with a charged particle, usually an electron. It results in a decrease in energy (increase in wavelength) of the photon (which may be an X-ray or gamma ray photon), called the Compton effect. Part of the energy of the photon is transferred to the recoiling particle.
Impedance of free spaceIn electromagnetism, the impedance of free space, Z0, is a physical constant relating the magnitudes of the electric and magnetic fields of electromagnetic radiation travelling through free space. That is, where is the electric field strength and is the magnetic field strength. Its presently accepted value is Where Ω is the ohm, the SI unit of electrical resistance. The impedance of free space (that is the wave impedance of a plane wave in free space) is equal to the product of the vacuum permeability μ0 and the speed of light in vacuum c0.
Path space fibrationIn algebraic topology, the path space fibration over a based space is a fibration of the form where is the path space of X; i.e., equipped with the compact-open topology. is the fiber of over the base point of X; thus it is the loop space of X. The space consists of all maps from I to X that may not preserve the base points; it is called the free path space of X and the fibration given by, say, , is called the free path space fibration. The path space fibration can be understood to be dual to the mapping cone.