Publication

A fast algorithm for subspace state-space system identification via exploitation of the displacement structure

Daniel Kressner
2001
Journal paper
Abstract

Two recent approaches (Van Overschee, De Moor, N4SID, Automatica 30 (1) (1994) 75; Verhaegen, Int. J. Control 58(3) (1993) 555) in subspace identification problems require the computation of the R factor of the QR factorization of a block-Hankel matrix H, which, in general has a huge number of rows. Since the data are perturbed by noise, the involved matrix H is, in general, full rank. It is well known that, from a theoretical point of view. the R factor of the PR factorization of H is equivalent to the Cholesky factor of the correlation matrix HTH, apart from a multiplication by a sign matrix. In Sima (Proceedings Second NICONET Workshop, Paris-Versailles, December 3, 1999, p. 75), a fast Cholesky factorization of the correlation matrix, exploiting the block-Hankel structure of H, is described. In this paper we consider a fast algorithm to compute the R factor based on the generalized Schur algorithm. The proposed algorithm allows to handle the rank-deficient case. (C) 2001 Elsevier Science B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.