Publication

Memory-efficient Krylov subspace techniques for solving large-scale Lyapunov equations

Daniel Kressner
2008
Conference paper
Abstract

This paper considers the solution of large-scale Lyapunov matrix equations of the form AX + XA(T) = -bb(T). The Arnoldi method is a simple but sometimes ineffective approach to deal with such equations. One of its major drawbacks is excessive memory consumption caused by slow convergence. To overcome this disadvantage, we propose two-pass Krylov subspace methods, which only compute the solution of the compressed equation in the first pass. The second pass computes the product of the Krylov subspace basis with a low-rank approximation of this solution. For symmetric A, we employ the Lanczos method; for nonsymmetric A, we extend a recently developed restarted Arnoldi method for the approximation of matrix functions. Preliminary numerical experiments reveal that the resulting algorithms require significantly less memory at the expense of extra matrix-vector products.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.