Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper considers the solution of large-scale Lyapunov matrix equations of the form AX + XA(T) = -bb(T). The Arnoldi method is a simple but sometimes ineffective approach to deal with such equations. One of its major drawbacks is excessive memory consumption caused by slow convergence. To overcome this disadvantage, we propose two-pass Krylov subspace methods, which only compute the solution of the compressed equation in the first pass. The second pass computes the product of the Krylov subspace basis with a low-rank approximation of this solution. For symmetric A, we employ the Lanczos method; for nonsymmetric A, we extend a recently developed restarted Arnoldi method for the approximation of matrix functions. Preliminary numerical experiments reveal that the resulting algorithms require significantly less memory at the expense of extra matrix-vector products.
,