Publication

Memory-efficient Krylov subspace techniques for solving large-scale Lyapunov equations

Daniel Kressner
2008
Article de conférence
Résumé

This paper considers the solution of large-scale Lyapunov matrix equations of the form AX + XA(T) = -bb(T). The Arnoldi method is a simple but sometimes ineffective approach to deal with such equations. One of its major drawbacks is excessive memory consumption caused by slow convergence. To overcome this disadvantage, we propose two-pass Krylov subspace methods, which only compute the solution of the compressed equation in the first pass. The second pass computes the product of the Krylov subspace basis with a low-rank approximation of this solution. For symmetric A, we employ the Lanczos method; for nonsymmetric A, we extend a recently developed restarted Arnoldi method for the approximation of matrix functions. Preliminary numerical experiments reveal that the resulting algorithms require significantly less memory at the expense of extra matrix-vector products.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.