Publication

Vibrational Sum-Frequency Scattering Studies of Oil-in-Water Emulsions

Hilton Barbosa De Aguiar
2011
EPFL thesis
Abstract

Oil-in-water emulsions consist of oil droplets dispersed in an aqueous phase. Interfacial properties of the droplets determine the stability of emulsions. Even though this statement is widely accepted, a molecular level picture of the droplet interface is yet to be determined. In this thesis, we use Vibrational Sum-Frequency Scattering (SFS), an interface specific technique, to probe the interface of the droplets with chemical specificity. We start with a detailed description of how SFS measurements can be performed in water and what the effects of penetration depth, pulse energy and particle density are. This is followed by a comparison between non phase-matched SF scattering and phase-matched SF Generation from planar interfaces. We then show studies on hexadecane oil droplets stabilized by the anionic surfactant sodium dodecylsulfate (SDS) dipersed in D2O. We measure the interfacial activity of SDS by probing the response of symmetric SO3 stretch of the headgroup. Surprisingly, the results show that the interfacial density of SDS is very low, namely one order of magnitude lower than what would be expected at the corresponding planar interface. As a consequence of such a low interfacial density, the interfacial tension barely changes from the value of the pristine oil-water interface. Moreover, we use SFS to retrieve molecular order of the alkyl chains from the CH stretch responses of either SDS or oil using a selective deuteration scheme. The spectral analysis shows that the SDS alkyl chains are highly disordered at the droplets interface. In contrast, the alkyl chains of the oil molecules at the interface are more ordered than SDS. Interference experiments show that the oil molecules are, in contrast to what is seen on most planar interface, oriented predominantly parallel with respect to the interface. We also probe the alkyl chain order of SDS adsorbed at interfaces of dispersions of polymer particles. Regardless of the chemical structure of the dispersed phase the SDS molecules are always very disordered. We can therefore conclude that SDS does not show any specific interaction with the droplets or particles. In the last part of this thesis, we use SFS to probe electrostatic properties of the droplets interfaces. Adsorption of charged surfactants at the droplet interface creates a strong electrostatic field that is screened by water and counter ions in the solution. The electrostatic field, together with the incoming laser fields, excite the OD vibrational stretch of the water molecules in the vicinity of the interface with a strength proportional to the surface potential. The surface charge densities are probed by the response of the symmetric SO3 stretch of the SDS headgroup. Therefore, we are able to independently measure the surface potential and the surface charge density. We show that it is essential to separate the changes of surface potential due to charging of the interface from changes due to screening effects. The results are in agreement with the Gouy-Chapman model.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Surface charge
A surface charge is an electric charge present on a two-dimensional surface. These electric charges are constrained on this 2-D surface, and surface charge density, measured in coulombs per square meter (C•m−2), is used to describe the charge distribution on the surface. The electric potential is continuous across a surface charge and the electric field is discontinuous, but not infinite; this is unless the surface charge consists of a dipole layer. In comparison, the potential and electric field both diverge at any point charge or linear charge.
Surface tension
Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to float on a water surface without becoming even partly submerged. At liquid–air interfaces, surface tension results from the greater attraction of liquid molecules to each other (due to cohesion) than to the molecules in the air (due to adhesion). There are two primary mechanisms in play.
Surfactant
Surfactants are chemical compounds that decrease the surface tension or interfacial tension between two liquids, a liquid and a gas, or a liquid and a solid. Surfactants may function as emulsifiers, wetting agents, detergents, foaming agents, or dispersants. The word "surfactant" is a blend of surface-active agent, coined 1950. Surfactants are usually organic compounds that are akin to amphiphilic, which means that this molecule, being as double-agent, each contains a hydrophilic "water-seeking" group (the head), and a hydrophobic "water-avoiding" group (the tail).
Show more
Related publications (64)

Second harmonic scattering of nanoparticles: A journey into the electrical double layer

Bingxin Chu

In aqueous solutions, a charged surface causes the redistribution of nearby ions. The ion layers formed are known as the electrical double layer (EDL), and are widespread in many systems involving electrochemistry, colloidal science, biomedicine, and energ ...
EPFL2024

A Versatile Approach to Stabilize Liquid-Liquid Interfaces using Surfactant Self-Assembly

Julian Charles Shillcock

Stabilizing liquid-liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the w ...
Wiley-V C H Verlag Gmbh2024

Influence of the hydrophile-lipophile balance of perfluorinated surfactants on the emulsion stability

Esther Amstad, Gaia De Angelis

Emulsions are omnipresent in our everyday life; for example, in food, certain drug and cosmetic formulations, agriculture, and as paints. Moreover, they are frequently used to perform high-throughput screening assays with minimum sample volumes. Key to the ...
Springer Heidelberg2024
Show more
Related MOOCs (12)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more