Publication

Electron donor-acceptor distance dependence of the dynamics of light-induced interfacial charge transfer in the dye-sensitization of nanocrystalline oxide semiconductors

Abstract

The effect of electronic and nuclear factors on the dynamics of dye-to-semiconductor electron transfer was studied employing RuII(terpy)(NCS)3 sensitizers grafted onto transparent films made of titanium dioxide nanoparticles. Various approaches were strived to understand the dependence of the kinetics of charge injection and recombination processes upon the distance separating the dye molecules and the redox active surface. A series of bridged sensitizers containing p- phenylene spacers of various lengths and phosphonic anchoring groups were adsorbed onto TiO2 films. The kinetics of interfacial charge transfer was recorded by use of time-resolved spectroscopy in the fs-ps domain. The electron injection process was found to be biphasic with a clear exponential distance dependence of the fast kinetic component. The slower part of the kinetics was essentially unaffected by the length of the spacer bridge and was attributed to sensitizer molecules that are weakly bound to the surface with no direct contact of the anchoring group with the semiconductor. In a second approach, the kinetics of both forward- and back-electron transfer across a layer of insulating Al2O3 deposited onto TiO2 nanocrystalline particles was investigated. Efficient charge injection was observed over distances up to 3 nm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Dye-sensitized solar cell
A dye-sensitized solar cell (DSSC, DSC, DYSC or Grätzel cell) is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a photoelectrochemical system. The modern version of a dye solar cell, also known as the Grätzel cell, was originally co-invented in 1988 by Brian O'Regan and Michael Grätzel at UC Berkeley and this work was later developed by the aforementioned scientists at the École Polytechnique Fédérale de Lausanne (EPFL) until the publication of the first high efficiency DSSC in 1991.
Hybrid solar cell
Hybrid solar cells combine advantages of both organic and inorganic semiconductors. Hybrid photovoltaics have organic materials that consist of conjugated polymers that absorb light as the donor and transport holes. Inorganic materials in hybrid cells are used as the acceptor and electron transporter in the structure. The hybrid photovoltaic devices have a potential for not only low-cost by roll-to-roll processing but also for scalable solar power conversion. Solar cells are devices that convert sunlight into electricity by the photovoltaic effect.
Organic semiconductor
Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are either injected from appropriate electrodes, upon doping or by photoexcitation. In molecular crystals the energetic separation between the top of the valence band and the bottom conduction band, i.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.