**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Composite Higgs as a Viable Scenario for Electro-Weak Symmetry Breaking

Abstract

This thesis presents a general discussion of the Composite Higgs scenario of Electro-Weak Symmetry Breaking (EWSB). We start by reviewing the Standard Model of Electro-Weak interaction, discussing its experimental tests and conceptual pitfalls. Emphasis is given to the effective field theory point of view. In particular, the inherent tension related to the stability of the Electro-Weak scale motivates us to explore the possibility of having the Higgs field emerging as a Nambu-Goldstone boson from a new strongly coupled sector. Our construction is to a large extent inspired by the picture of the long range dynamics of QCD. The main ingredients are the symmetry of the UV theory, the pattern of its spontaneous breakdown and the sources of explicit breaking. In QCD, the latter are provided by the light quark masses and by the electromagnetic interaction. In Composite Higgs models, the most relevant symmetry breaking couplings are those related to the generation of the third family quark Yukawas through partial compositeness. They generate a potential for the Higgs and thus trigger EWSB. The constraints on the scenario are exposed, with a particular emphasis on the composite Two Higgs Doublet Model (THDM). While a residual SO(4) symmetry is sufficient to ensure a realistic phenomenology in presence of a single composite Higgs doublet, an extended Higgs sector needs more symmetries. For two doublets we show how either CP or a ℤ2 symmetry can play this role and construct a model for each realisation relying on the SO(6)/SO(4) × SO(2) coset. Finally, we discuss the phenomenology of this scenario. In particular, we present de differences between an elementary and a composite THDM. We also conclude that composite fermions associated to the third family quarks seem to be the most promising experimental handles for these models. We discuss their discovery range at the LHC, and the possibility of measuring the structure of their couplings. This knowledge would allow important insight into the strong dynamics.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (27)

Standard Model

The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and cla

Effective field theory

In physics, an effective field theory is a type of approximation, or effective theory, for an underlying physical theory, such as a quantum field theory or a statistical mechanics model. An effective

Fundamental interaction

In physics, the fundamental interactions or fundamental forces are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exi

Related publications (120)

Loading

Loading

Loading

We use an effective Lagrangian approach to address the question of the dynamics of electroweak symmetry breaking in the Standard Model (SM) and its relation to the hierarchy problem. Composite Higgs models provide a solution by describing the recently discovered Higgs-like scalar particle as a composite pseudo Nambu-Goldstone boson that dissolves into its constituents above a certain high energy scale. We discuss many features of the low energy description of composite Higgs models and present an explicit realisation in a flat extra dimension showing explicitly that top partners with masses below 1TeV are expected in a natural theory. Naturalness requires New Physics not much above the weak scale and hence motivates the search for direct and indirect evidence of physics beyond the SM at the LHC and future colliders. As an indirect probe at the LHC, we propose a dedicated analysis of single top production in association with a Higgs boson to lift the degeneracy in the sign of the top Yukawa coupling. We move on to an extensive study of WW scattering, double and triple Higgs production at future linear colliders to estimate their impact on the parameter space of a strongly interacting Higgs boson. Direct probes of New Physics at the LHC include the search for heavy vectors and fermions. We introduce a model-independent strategy to study narrow resonances which we apply to a heavy vector triplet of the SM for illustration. We conclude by summarising current constraints and the expected reach of future colliders on the parameter space of a minimal composite Higgs model. This thesis is based on the papers in Refs. [1–4].

We present two different approaches to solve the hierarchy problem of the Standard Model and to provide a consistent dynamical mechanism for electroweak symmetry breaking. As a first scenario, we follow the naturalness paradigm as realized in Composite Higgs theories, which conceive the Higgs particle as a bound state of a new strongly interacting sector confining at the TeV scale. We present a minimal implementation of the model and study in detail the phenomenology of vector resonances, which are predicted as states excited from the vacuum by the conserved currents of the new strong dynamics. This analysis allows us to derive constraints on the parameter space of Composite Higgs models from the presently available LHC data and to confront naturalness with experimental results. Motivated by the rising tension between theoretical expectations and the absence of new physics signals at the LHC, we consider as a second possibility the neutral naturalness paradigm and address the hierarchy problem by posing the existence of a mirror copy of the Standard Model, as realized in Twin Higgs theories. This new color-blind sector is the main actor in protecting the Higgs mass from large radiative corrections and is un-discoverable at the LHC, allowing us to push far in the ultraviolet the scale where the Standard Model effective theory breaks down and colored resonances appear. We present an implementation of the Twin Higgs program into a composite model and discuss the requirements for uplifting the symmetry protection mechanism also to the ultraviolet theory. After introducing a consistent Composite Twin Higgs model, we consider the constraints imposed on the scale where colored resonances are expected by the determination of the Higgs mass at three loops order, electroweak precision tests and perturbativity of the ultraviolet-complete model. We show that, although allowing in principle the new physics scale to lie far out of the LHC reach, these constructions need the existence of light colored top partners, with a mass of around 2-4 TeV, to comply with indirect observations. Neutral naturalness models may then evade detection at the LHC, but they can be probed and falsified at future colliders.

Currently, the best theoretical description of fundamental matter and its gravitational interaction is given by the Standard Model (SM) of particle physics and Einstein's theory of General Relativity (GR). These theories contain a number of seemingly unrelated scales. While Newton's gravitational constant and the mass of the Higgs boson are parameters in the classical action, the masses of other elementary particles are due to the electroweak symmetry breaking. Yet other scales, like ΛQCD associated to the strong interaction, only appear after the quantization of the theory. We reevaluate the idea that the fundamental theory of nature may contain no fixed scales and that all observed scales could have a common origin in the spontaneous break-down of exact scale invariance. To this end, we consider a few minimal scale-invariant extensions of GR and the SM, focusing especially on their cosmological phenomenology. In the simplest considered model, scale invariance is achieved through the introduction of a dilaton field. We find that for a large class of potentials, scale invariance is spontaneously broken, leading to induced scales at the classical level. The dilaton is exactly massless and practically decouples from all SM fields. The dynamical break-down of scale invariance automatically provides a mechanism for inflation. Despite exact scale invariance, the theory generally contains a cosmological constant, or, put in other words, flat spacetime need not be a solution. We next replace standard gravity by Unimodular Gravity (UG). This results in the appearance of an arbitrary integration constant in the equations of motion, inducing a run-away potential for the dilaton. As a consequence, the dilaton can play the role of a dynamical dark-energy component. The cosmological phenomenology of the model combining scale invariance and unimodular gravity is studied in detail. We find that the equation of state of the dilaton condensate has to be very close to the one of a cosmological constant. If the spacetime symmetry group of the gravitational action is reduced from the group of all diffeomorphisms (Diff) to the subgroup of transverse diffeomorphisms (TDiff), the metric in general contains a propagating scalar degree of freedom. We show that the replacement of Diff by TDiff makes it possible to construct a scale-invariant theory of gravity and particle physics in which the dilaton appears as a part of the metric. We find the conditions under which such a theory is a viable description of particle physics and in particular reproduces the SM phenomenology. The minimal theory with scale invariance and UG is found to be a particular case of a theory with scale and TDiff invariance. Moreover, cosmological solutions in models based on scale and TDiff invariance turn out to generically be similar to the solutions of the model with UG. In usual quantum field theories, scale invariance is anomalous. This might suggest that results based on classical scale invariance are necessarily spoiled by quantum corrections. We show that this conclusion is not true. Namely, we propose a new renormalization scheme which allows to construct a class of quantum field theories that are scale-invariant to all orders of perturbation theory and where the scale symmetry is spontaneously broken. In this type of theory, all scales, including those related to dimensional transmutation, like ΛQCD, appear as a consequence of the spontaneous break-down of the scale symmetry. The proposed theories are not renormalizable. Nonetheless, they are valid effective theories below a field-dependent cut-off scale. If the scale-invariant renormalization scheme is applied to the presented minimal scale-invariant extensions of GR and the SM, the goal of having a common origin of all scales, spontaneous breaking of scale invariance, is achieved.