**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Tackling the Supersymmetric Flavour Problem in String Models

Abstract

In this work we address one of the phenomenological issues of beyond the Standard Model scenarios which embed Supersymmetry, namely the Supersymmetric Flavour Problem, in the context of String Theory. Indeed, the addition of new interactions to the Standard Model generically spoils its flavour structure which is one of its major achievements since it for example leads to a very elegant understanding of the absence of flavour changing neutral currents in the leptonic sector and of the stability of the proton, thanks to accidental symmetries. We focus on a subset of the phenomenologically dangerous operators, namely the soft scalar masses. One way out of the Supersymmetric Flavour Problem is to geographically separate the observable and hidden sectors along a fifth dimension, gravity being the only interaction propagating in the bulk. In such scenarios, the soft scalar masses are vanishing at the classical level since there is no direct contact term between the observable and hidden multiplets and tend to be universal at the loop-level. However such setups hardly ever come about in String Theory, which is one of the most promising candidates of quantum gravity. In order to make contact with the five-dimensional picture, we focus on the prototypical case of the E8 × E8 Heterotic M-Theory which, in a certain regime, effectively looks five-dimensional and embeds matter fields on two end-of-the-world branes. In these scenarios, not only gravity but also vector multiplets propagate in the five-dimensional bulk, effectively spoiling the sequestered picture. However, since the contact terms responsible for the appearance of soft scalar masses arise due to the exchange of heavy vectors, they do enjoy a current-current structure which can be exploited to inhibit the emergence of soft scalar masses by postulating a global symmetry in the hidden sector. In order to assess the possibility of realising such a mechanism, we first study the full dependence of the Kähler potential on both the moduli and the matter fields in the case of orbifold and Calabi-Yau compactifications. We then determine whether an effective sequestering may be achieved thanks to a global symmetry and argue that whereas for orbifold models our strategy can naturally be put at work, it can only be implemented in a subset of Calabi-Yau models.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (26)

Related publications (40)

String theory

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these s

Hidden sector

In particle physics, the hidden sector, also known as the dark sector, is a hypothetical collection of yet-unobserved quantum fields and their corresponding hypothetical particles. The interactions b

Matter

In classical physics and general chemistry, matter is any substance with mass and takes up space by having volume. All everyday objects that can be touched are ultimately compos

Loading

Loading

Loading

Currently, the best theoretical description of fundamental matter and its gravitational interaction is given by the Standard Model (SM) of particle physics and Einstein's theory of General Relativity (GR). These theories contain a number of seemingly unrelated scales. While Newton's gravitational constant and the mass of the Higgs boson are parameters in the classical action, the masses of other elementary particles are due to the electroweak symmetry breaking. Yet other scales, like ΛQCD associated to the strong interaction, only appear after the quantization of the theory. We reevaluate the idea that the fundamental theory of nature may contain no fixed scales and that all observed scales could have a common origin in the spontaneous break-down of exact scale invariance. To this end, we consider a few minimal scale-invariant extensions of GR and the SM, focusing especially on their cosmological phenomenology. In the simplest considered model, scale invariance is achieved through the introduction of a dilaton field. We find that for a large class of potentials, scale invariance is spontaneously broken, leading to induced scales at the classical level. The dilaton is exactly massless and practically decouples from all SM fields. The dynamical break-down of scale invariance automatically provides a mechanism for inflation. Despite exact scale invariance, the theory generally contains a cosmological constant, or, put in other words, flat spacetime need not be a solution. We next replace standard gravity by Unimodular Gravity (UG). This results in the appearance of an arbitrary integration constant in the equations of motion, inducing a run-away potential for the dilaton. As a consequence, the dilaton can play the role of a dynamical dark-energy component. The cosmological phenomenology of the model combining scale invariance and unimodular gravity is studied in detail. We find that the equation of state of the dilaton condensate has to be very close to the one of a cosmological constant. If the spacetime symmetry group of the gravitational action is reduced from the group of all diffeomorphisms (Diff) to the subgroup of transverse diffeomorphisms (TDiff), the metric in general contains a propagating scalar degree of freedom. We show that the replacement of Diff by TDiff makes it possible to construct a scale-invariant theory of gravity and particle physics in which the dilaton appears as a part of the metric. We find the conditions under which such a theory is a viable description of particle physics and in particular reproduces the SM phenomenology. The minimal theory with scale invariance and UG is found to be a particular case of a theory with scale and TDiff invariance. Moreover, cosmological solutions in models based on scale and TDiff invariance turn out to generically be similar to the solutions of the model with UG. In usual quantum field theories, scale invariance is anomalous. This might suggest that results based on classical scale invariance are necessarily spoiled by quantum corrections. We show that this conclusion is not true. Namely, we propose a new renormalization scheme which allows to construct a class of quantum field theories that are scale-invariant to all orders of perturbation theory and where the scale symmetry is spontaneously broken. In this type of theory, all scales, including those related to dimensional transmutation, like ΛQCD, appear as a consequence of the spontaneous break-down of the scale symmetry. The proposed theories are not renormalizable. Nonetheless, they are valid effective theories below a field-dependent cut-off scale. If the scale-invariant renormalization scheme is applied to the presented minimal scale-invariant extensions of GR and the SM, the goal of having a common origin of all scales, spontaneous breaking of scale invariance, is achieved.

Christopher John Andrey, Claudio Scrucca

We elaborate on the idea that five-dimensional models where sequestering is spoiled due to contact interactions induced by vector multiplets may still be mildly sequestered if a global version of the gauge symmetry associated to the latter survives in the hidden sector. Interestingly, it has been argued that although in such a situation non-trivial current current contact interactions are induced by the heavy vector modes, these do not induce soft scalar masses, as a consequence of the global symmetry. We perform a detailed study of how this hybrid mechanism can be implemented in supergravity and string models, focusing on the prototypical case of heterotic M-theory orbifolds. We emphasize that in general the mechanism works only up to subleading effects suppressed by the ratio between the global symmetry breaking scale in the hidden sector and the vector mass scale or the Planck scale. We also argue that this mild sequestering mechanism allows to rehabilitate the scenario of dilaton domination of supersymmetry breaking, which is incompatible with dilaton stabilization in its original version, by exploiting the fact that hidden brane fields do contribute to the cosmological constant but not to soft terms, thanks to the global symmetry. (C) 2010 Elsevier B.V. All rights reserved.

2010Christopher John Andrey, Claudio Scrucca

We study the possibility of realizing an effective sequestering between visible and hidden sectors in generic heterotic string models, generalizing previous work on orbifold constructions to smooth Calabi-Yau compactifications. In these theories, genuine sequestering is spoiled by interactions mixing chiral multiplets of the two sectors in the effective Kahler potential. These effective interactions however have a specific current-current-like structure and can be interpreted from an M-theory viewpoint as coming from the exchange of heavy vector multiplets. One may then attempt to inhibit the emergence of generic soft scalar masses in the visible sector by postulating a suitable global symmetry in the dynamics of the hidden sector. This mechanism is however not straightforward to implement, because the structure of the effective contact terms and the possible global symmetries is a priori model dependent. To assess whether there is any robust and generic option, we study the full dependence of the Kahler potential on the moduli and the matter fields. This is well known for orbifold models, where it always leads to a symmetric scalar manifold, but much less understood for Calabi-Yau models, where it generically leads to a non-symmetric scalar manifold. We then examine the possibility of an effective sequestering by global symmetries, and argue that whereas for orbifold models this can be put at work rather naturally, for Calabi-Yau models it can only be implemented in rather peculiar circumstances.