Time-Domain Implementation of Cooray-Rubinstein Formula via Convolution Integral and Rational Approximation
Related publications (45)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
An exact analytical expression for the electric field of the return stroke as excited by a propagating step current source is derived in this paper. This expression could be advantageously used to evaluate the disturbances caused by lightning on overhead l ...
This paper proposes a tower-foot grounding system model compatible with EMT programs which might be useful for the simulation of lightning transients in overhead lines. The proposed model is based on the solution of the telegrapher's equations and the appl ...
This article proposes a method for the derivation of a formula that links the maximum lightning-induced-overvoltage occurring on an overhead distribution line with the variables that characterize the lightning return stroke, such as the peak current, front ...
There are three equivalent procedures to evaluate the voltages induced by lightning on power lines, namely, the Agrawal–Price–Gurbaxani model, the Taylor–Satterwhite–Harrison model, and the Rachidi model. The Cooray–Rubinstein approximation is a procedure ...
This paper investigates the effect of frequency-dependent soil parameters on the simulation of electromagnetic transients on overhead lines, based on the application of the FDTD method to solve the telegrapher’s equations. The ground return impedance is ca ...
Angle and amplitude estimation errors in magnetic direction finding, called site errors, are important sensor-specific errors in lightning location systems (LLS). They are known to be caused by nearby cables and overhead lines due to induced currents. Due ...
This paper presents the results of a pilot test performed on a real medium voltage distribution network in Switzerland with the aim of assessing the performance of a fault location system relying on the Electromagnetic Time Reversal (EMTR) method. To the b ...
This chapter describes two of the most adopted software tools for the evaluation of the lightning performance of transmission and distribution lines, namely FLASH and LIOV-EMTP (Lightning Induced OverVoltage - ElectroMagnetic Transient Program), together w ...
The Institution of Engineering and Technology IET2020
The finite-difference time-domain method is one of the most widely used numerical electromagnetic computation techniques, and it has become an effective tool for analyzing electromagnetic transient phenomena in three-dimensional structures and grounding sy ...
High-frequency electromagnetic fields such as those associated with electromagnetic pulse (EMP) and intentional electromagnetic interference (IEMI) can couple to overhead power lines. Since the height of the overhead power lines can be comparable or even l ...