**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# System identification with missing data via nuclear norm regularization

Abstract

The application of nuclear norm regularization to system identification was recently shown to be a useful method for identifying low order linear models. In this paper, we consider nuclear norm regularization for identification of LTI systems with missing data under a total squared error constraint. The missing data problem is of ongoing interest because the need to analyze incomplete data sets arises frequently in diverse fields such as chemistry, psychometrics and satellite imaging. By casting the system identification as a convex optimization problem, nuclear norm regularization can be applied to identify the system in one step, i.e., without imputation of the missing data. Our exploratory work makes use of experimental data sets taken from an open system identification database, DaISy, to compare the proposed method named NucID to the standard techniques N4SID, prediction error minimization and expectation conditional maximization via linear regression. NucID is found to consistently identify systems with missing data within the imposed error tolerance, a task at which the standard methods sometimes fail, and to be particularly effective when the data is missing with patterns, e.g., on multi-rate systems, where it clearly outperforms existing procedures.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (10)

Related concepts (32)

Related publications (52)

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Linear regression

In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.

Linear least squares

Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.

Missing data

In statistics, missing data, or missing values, occur when no data value is stored for the variable in an observation. Missing data are a common occurrence and can have a significant effect on the conclusions that can be drawn from the data. Missing data can occur because of nonresponse: no information is provided for one or more items or for a whole unit ("subject"). Some items are more likely to generate a nonresponse than others: for example items about private subjects such as income.

Correlated errors of experimental data are a common but often neglected problem in physical sciences. Various tools are provided here for thorough propagation of uncertainties in cases of correlated errors. Discussed are techniques especially applicable to ...

Torque teno virus (TTV) is considered to be an ubiquitous member of the commensal human blood virome commonly reported in mixed genotype co-infections. This study investigates the genomic diversity of TTV in blood samples from 816 febrile Tanzanian childre ...

Alexandre Caboussat, Dimitrios Gourzoulidis

We consider a least-squares/relaxation finite element method for the numerical solution of the prescribed Jacobian equation. We look for its solution via a least-squares approach. We introduce a relaxation algorithm that decouples this least-squares proble ...