Tarski monster groupIn the area of modern algebra known as group theory, a Tarski monster group, named for Alfred Tarski, is an infinite group G, such that every proper subgroup H of G, other than the identity subgroup, is a cyclic group of order a fixed prime number p. A Tarski monster group is necessarily simple. It was shown by Alexander Yu. Olshanskii in 1979 that Tarski groups exist, and that there is a Tarski p-group for every prime p > 1075. They are a source of counterexamples to conjectures in group theory, most importantly to Burnside's problem and the von Neumann conjecture.
HomographyIn projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, some collineations are not homographies, but the fundamental theorem of projective geometry asserts that is not so in the case of real projective spaces of dimension at least two. Synonyms include projectivity, projective transformation, and projective collineation.
Wilson primeIn number theory, a Wilson prime is a prime number such that divides , where "" denotes the factorial function; compare this with Wilson's theorem, which states that every prime divides . Both are named for 18th-century English mathematician John Wilson; in 1770, Edward Waring credited the theorem to Wilson, although it had been stated centuries earlier by Ibn al-Haytham. The only known Wilson primes are 5, 13, and 563 . Costa et al. write that "the case is trivial", and credit the observation that 13 is a Wilson prime to .
Double Mersenne numberIn mathematics, a double Mersenne number is a Mersenne number of the form where p is prime. The first four terms of the sequence of double Mersenne numbers are : A double Mersenne number that is prime is called a double Mersenne prime. Since a Mersenne number Mp can be prime only if p is prime, (see Mersenne prime for a proof), a double Mersenne number can be prime only if Mp is itself a Mersenne prime. For the first values of p for which Mp is prime, is known to be prime for p = 2, 3, 5, 7 while explicit factors of have been found for p = 13, 17, 19, and 31.
Felix KleinChristian Felix Klein (klaɪn; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and group theory. His 1872 Erlangen program, classifying geometries by their basic symmetry groups, was an influential synthesis of much of the mathematics of the time. Felix Klein was born on 25 April 1849 in Düsseldorf, to Prussian parents.