Group ringIn algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring.
Klein four-groupIn mathematics, the Klein four-group is an abelian group with four elements, in which each element is self-inverse (composing it with itself produces the identity) and in which composing any two of the three non-identity elements produces the third one. It can be described as the symmetry group of a non-square rectangle (with the three non-identity elements being horizontal reflection, vertical reflection and 180-degree rotation), as the group of bitwise exclusive or operations on two-bit binary values, or more abstractly as Z2 × Z2, the direct product of two copies of the cyclic group of order 2.
Projective coverIn the branch of abstract mathematics called , a projective cover of an object X is in a sense the best approximation of X by a projective object P. Projective covers are the of injective envelopes. Let be a and X an object in . A projective cover is a pair (P,p), with P a projective object in and p a superfluous epimorphism in Hom(P, X). If R is a ring, then in the category of R-modules, a superfluous epimorphism is then an epimorphism such that the kernel of p is a superfluous submodule of P.
Complemented subspaceIn the branch of mathematics called functional analysis, a complemented subspace of a topological vector space is a vector subspace for which there exists some other vector subspace of called its (topological) complement in , such that is the direct sum in the category of topological vector spaces. Formally, topological direct sums strengthen the algebraic direct sum by requiring certain maps be continuous; the result retains many nice properties from the operation of direct sum in finite-dimensional vector spaces.
Supersolvable groupIn mathematics, a group is supersolvable (or supersoluble) if it has an invariant normal series where all the factors are cyclic groups. Supersolvability is stronger than the notion of solvability. Let G be a group. G is supersolvable if there exists a normal series such that each quotient group is cyclic and each is normal in . By contrast, for a solvable group the definition requires each quotient to be abelian. In another direction, a polycyclic group must have a subnormal series with each quotient cyclic, but there is no requirement that each be normal in .
Direct product of groupsIn mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics. In the context of abelian groups, the direct product is sometimes referred to as the direct sum, and is denoted .
Projective objectIn , the notion of a projective object generalizes the notion of a projective module. Projective objects in are used in homological algebra. The dual notion of a projective object is that of an injective object. An in a category is projective if for any epimorphism and morphism , there is a morphism such that , i.e. the following diagram commutes: That is, every morphism factors through every epimorphism . If C is , i.e.
Isomorphism of categoriesIn , two categories C and D are isomorphic if there exist functors F : C → D and G : D → C which are mutually inverse to each other, i.e. FG = 1D (the identity functor on D) and GF = 1C. This means that both the s and the morphisms of C and D stand in a one-to-one correspondence to each other. Two isomorphic categories share all properties that are defined solely in terms of category theory; for all practical purposes, they are identical and differ only in the notation of their objects and morphisms.
Tate moduleIn mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group A. Often, this construction is made in the following situation: G is a commutative group scheme over a field K, Ks is the separable closure of K, and A = G(Ks) (the Ks-valued points of G). In this case, the Tate module of A is equipped with an action of the absolute Galois group of K, and it is referred to as the Tate module of G. Given an abelian group A and a prime number p, the p-adic Tate module of A is where A[pn] is the pn torsion of A (i.
Group with operatorsIn abstract algebra, a branch of mathematics, the algebraic structure group with operators or Ω-group can be viewed as a group with a set Ω that operates on the elements of the group in a special way. Groups with operators were extensively studied by Emmy Noether and her school in the 1920s. She employed the concept in her original formulation of the three Noether isomorphism theorems. A group with operators can be defined as a group together with an action of a set on : that is distributive relative to the group law: For each , the application is then an endomorphism of G.