Development and Characterization of a Microfluidic Chip to Capture Circulating Prostate Cancer Cells
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Cancer is a global disease and a leading cause of death worldwide. While surgery, radiotherapy and chemotherapy comprise the classical tools to eradicate tumors, they do not cure cancer, cannot prevent metastases, lead to side effects, and most importantly ...
The research areas of tissue engineering and drug development have displayed increased interest in organ-on-a-chip studies, in which physiologically or pathologically relevant tissues can be engineered to test pharmaceutical candidates. Microfluidic techno ...
Since stem cells have the unique ability to produce more of themselves (i.e. to "self-renew") and to generate specialized tissue cells, they are an ideal source of cells for regenerative medicine and in vitro tissue models. In order to fully exploit this p ...
Monoclonal antibodies can specifically bind or even inhibit drug targets and have hence become the fastest growing class of human therapeutics. Although they can be screened for binding affinities at very high throughput using systems such as phage display ...
A microfluidic chip has been realized for investigating immune cell (U937) activation with lipopolysaccharide (LPS) and subsequent pro-inflammatory cytokine (Interleukin-6, IL-6) detection (Ruffert et al. Proc. EMBL Conference Microfluidics 2012a, p 184; P ...
Microfluidic technology has been successfully applied to isolate very rare tumor-derived epithelial cells (circulating tumor cells, CTCs) from blood with relatively high yield and purity, opening up exciting prospects for early detection of cancer. However ...
Tumor microenvironment contributes strongly to tumor evolution toward metastasis, a final stage in cancer progression. It provides essential clues to promote migration of cancer cells in metastatic sites. Moreover, inflammatory cells and immunomodulatory m ...
The physiological properties of cells are typically investigated in ensembles yielding averaged data that mask heterogeneities present in any cell population. Single-cell analysis techniques based on microfluidic "lab on a chip" (LOC) devices have recently ...
Separation and subsequent culturing of MCF-7 breast cancer cells on self-assembled protein-coated magnetic beads in a microfluidic chip is demonstrated. The beads were patterned in situ inside a sealed microfluidic channel using magnetic-field-assisted ele ...
We present a monolithic silicon chip comprising a matrix of 84 single photon avalanche diodes (SPADs) to detect and discriminate fluorescent beads or fluorescently labeled single cells in a polydimethyl(-siloxane) (PDMS) cartridge that is positioned on top ...