Publication

Simulation of complex plasmonic circuits including bends

Abstract

Using a finite-element, full-wave modeling approach, we present a flexible method of analyzing and simulating dielectric and plasmonic waveguide structures as well as their mode coupling. This method is applied to an integrated plasmonic circuit where a straight dielectric waveguide couples through a straight hybrid long-range plasmon waveguide to a uniformly bent hybrid one. The hybrid waveguide comprises a thin metal core embedded in a two–dimensional dielectric waveguide. The performance of such plasmonic circuits in terms of insertion losses is discussed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Plasmonic metamaterial
A plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.
Surface plasmon polariton
Surface plasmon polaritons (SPPs) are electromagnetic waves that travel along a metal–dielectric or metal–air interface, practically in the infrared or visible-frequency. The term "surface plasmon polariton" explains that the wave involves both charge motion in the metal ("surface plasmon") and electromagnetic waves in the air or dielectric ("polariton"). They are a type of surface wave, guided along the interface in much the same way that light can be guided by an optical fiber.
Tunable metamaterial
A tunable metamaterial is a metamaterial with a variable response to an incident electromagnetic wave. This includes remotely controlling how an incident electromagnetic wave (EM wave) interacts with a metamaterial. This translates into the capability to determine whether the EM wave is transmitted, reflected, or absorbed. In general, the lattice structure of the tunable metamaterial is adjustable in real time, making it possible to reconfigure a metamaterial device during operation.
Show more
Related publications (35)

Ultra-Small Bent Meta-Waveguide Filters

Romain Christophe Rémy Fleury, Maliheh Khatibi Moghaddam

This paper demonstrates the capability of locally resonant metamaterials (LRMs) for creating compact metallic waveguide E- and H-bends, which are simultaneously working as bandpass filters. For creating these bent meta-filters, we use composite pin-pipe wa ...
IEEE2022

Effect of mechanical nonlinearity on the electromagnetic response of a microwave tunable metamaterial

Romain Christophe Rémy Fleury, Bakhtiyar Orazbayev, Rayehe Karimi Mahabadi, Taha Goudarzi

Tunable metamaterials functionalities change in response to external stimuli. Mechanical deformation is known to be an efficient approach to tune the electromagnetic response of a deformable metamaterial. However, in the case of large mechanical deformatio ...
IOP Publishing Ltd2022

Hot carrier-mediated avalanche multiphoton photoluminescence from coupled Au–Al nanoantennas

Olivier Martin, Jérémy Butet

Avalanche multiphoton photoluminescence (AMPL) is observed from coupled Au–Al nanoantennas under intense laser pumping, which shows more than one order of magnitude emission intensity enhancement and distinct spectral features compared with ordinary metall ...
2021
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.