Publication

Effective Spin Model for the Spin-Liquid Phase of the Hubbard Model on the Triangular Lattice

Frédéric Mila
2010
Journal paper
Abstract

We show that the spin-liquid phase of the half-filled Hubbard model on the triangular lattice can be described by a pure spin model. This is based on a high-order strong coupling expansion ( up to order 12) using perturbative continuous unitary transformations. The resulting spin model is consistent with a transition from three-sublattice long-range magnetic order to an insulating spin-liquid phase, and with a jump of the double occupancy at the transition. Exact diagonalizations of both models show that the effective spin model is quantitatively accurate well into the spin-liquid phase, and a comparison with the Gutzwiller projected Fermi sea suggests a gapless spectrum and a spinon Fermi surface.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.