Universal Bounds And Semiclassical Estimates For Eigenvalues Of Abstract Schrodinger Operators
Related publications (51)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The paper introduces a functional time series (lagged) regression model. The impulse-response coefficients in such a model are operators acting on a separable Hilbert space, which is the function space L-2 in applications. A spectral approach to the estima ...
Using high level coordination primitives allows enhanced expressiveness of component-based frameworks to cope with the inherent complexity of present-day systems designs. Nonetheless, their distributed implementation raises multiple issues, regarding both ...
We announce and sketch the rigorous proof of a new kind of anomalous (or sub-ballistic) Lieb-Robinson (LR) bound for an isotropic XY chain in a quasiperiodic transversal magnetic field. Instead of the usual effective light cone |x|≤v|t|, we obtain |x|≤v|t| ...
This paper is concerned with the eigenvalue decay of the solution to operator Lyapunov equations with right-hand sides of finite rank. We show that the kth (generalized) eigenvalue decays exponentially in root k, provided that the involved operator A gener ...
This paper deals with asymptotic bifurcation, first in the abstract setting of an equation G(u) = lambda u, where G acts between real Hilbert spaces and lambda is an element of R, and then for square-integrable solutions of a second order non-linear ellipt ...
The connection between derivative operators and wavelets is well known. Here we generalize the concept by constructing multiresolution approximations and wavelet basis functions that act like Fourier multiplier operators. This construction follows from a s ...
In this paper, we consider nonlinear Schrodinger equations of the following type: -Delta u(x) + V (x) u(x) -q(x)|u(x)|sigma u(x) =lambda u(x), x is an element of R-N, u is an element of H-1(R-N) \ {0}, where N >= 2 and sigma > 0. We concentrate on situatio ...
Royal Society of Edinburgh Scotland Foundation, Cambridge2013
We study spectral properties of generalized weighted Hilbert matrices. In particular, we establish results on the spectral norm, the determinant, and various relations between the eigenvalues and eigenvectors of such matrices. We also study the asymptotic ...
The connection between derivative operators and wavelets is well known. Here we generalize the concept by constructing multiresolution approximations and wavelet basis functions that act like Fourier multiplier operators. This construction follows from a s ...
The set of solutions of a parameter-dependent linear partial differential equation with smooth coefficients typically forms a compact manifold in a Hilbert space. In this paper we review the generalized reduced basis method as a fast computational tool for ...