One-way compression functionIn cryptography, a one-way compression function is a function that transforms two fixed-length inputs into a fixed-length output. The transformation is "one-way", meaning that it is difficult given a particular output to compute inputs which compress to that output. One-way compression functions are not related to conventional data compression algorithms, which instead can be inverted exactly (lossless compression) or approximately (lossy compression) to the original data.
Cryptographic hash functionA cryptographic hash function (CHF) is a hash algorithm (a map of an arbitrary binary string to a binary string with a fixed size of bits) that has special properties desirable for a cryptographic application: the probability of a particular -bit output result (hash value) for a random input string ("message") is (as for any good hash), so the hash value can be used as a representative of the message; finding an input string that matches a given hash value (a pre-image) is unfeasible, assuming all input str
Preimage attackIn cryptography, a preimage attack on cryptographic hash functions tries to find a message that has a specific hash value. A cryptographic hash function should resist attacks on its (set of possible inputs). In the context of attack, there are two types of preimage resistance: preimage resistance: for essentially all pre-specified outputs, it is computationally infeasible to find any input that hashes to that output; i.e., given , it is difficult to find an such that () = .
Collision resistanceIn cryptography, collision resistance is a property of cryptographic hash functions: a hash function H is collision-resistant if it is hard to find two inputs that hash to the same output; that is, two inputs a and b where a ≠ b but H(a) = H(b). The pigeonhole principle means that any hash function with more inputs than outputs will necessarily have such collisions; the harder they are to find, the more cryptographically secure the hash function is.
SHA-3SHA-3 (Secure Hash Algorithm 3) is the latest member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015. Although part of the same series of standards, SHA-3 is internally different from the MD5-like structure of SHA-1 and SHA-2. SHA-3 is a subset of the broader cryptographic primitive family Keccak (ˈkɛtʃæk or ˈkɛtʃɑːk), designed by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche, building upon RadioGatún.
Collision attackIn cryptography, a collision attack on a cryptographic hash tries to find two inputs producing the same hash value, i.e. a hash collision. This is in contrast to a where a specific target hash value is specified. There are roughly two types of collision attacks: Classical collision attack Find two different messages m1 and m2 such that hash(m1) = hash(m2). More generally: Chosen-prefix collision attack Given two different prefixes p1 and p2, find two appendages m1 and m2 such that hash(p1 ∥ m1) = hash(p2 ∥ m2), where ∥ denotes the concatenation operation.
Block cipherIn cryptography, a block cipher is a deterministic algorithm that operates on fixed-length groups of bits, called blocks. Block ciphers are the elementary building blocks of many cryptographic protocols. They are ubiquitous in the storage and exchange of data, where such data is secured and authenticated via encryption. A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is suitable for the encryption of only a single block of data at a time, using a fixed key.
Hash functionA hash function is any function that can be used to map data of arbitrary size to fixed-size values, though there are some hash functions that support variable length output. The values returned by a hash function are called hash values, hash codes, digests, or simply hashes. The values are usually used to index a fixed-size table called a hash table. Use of a hash function to index a hash table is called hashing or scatter storage addressing.
Random oracleIn cryptography, a random oracle is an oracle (a theoretical black box) that responds to every unique query with a (truly) random response chosen uniformly from its output domain. If a query is repeated, it responds the same way every time that query is submitted. Stated differently, a random oracle is a mathematical function chosen uniformly at random, that is, a function mapping each possible query to a (fixed) random response from its output domain.
HMACIn cryptography, an HMAC (sometimes expanded as either keyed-hash message authentication code or hash-based message authentication code) is a specific type of message authentication code (MAC) involving a cryptographic hash function and a secret cryptographic key. As with any MAC, it may be used to simultaneously verify both the data integrity and authenticity of a message. HMAC can provide authentication using a shared secret instead of using digital signatures with asymmetric cryptography.