**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Leptogenesis from Quantum Interference in a Thermal Bath

Abstract

Thermal leptogenesis explains the observed matter-antimatter asymmetry of the universe in terms of neutrino masses, consistent with neutrino oscillation experiments. We present a full quantum mechanical calculation of the generated lepton asymmetry based on Kadanoff-Baym equations. Origin of the asymmetry is the departure of the statistical propagator of the heavy Majorana neutrino from the equilibrium propagator, together with CP violating couplings. The lepton asymmetry is calculated directly in terms of Green's functions without referring to "number densities.'' A detailed comparison with Boltzmann equations shows that conventional leptogenesis calculations have an uncertainty of at least 1 order of magnitude. Particularly important is the inclusion of thermal damping rates in the full quantum mechanical calculation.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (9)

Related publications (28)

Neutrino

A neutrino (njuːˈtriːnoʊ ; denoted by the Greek letter ν) is a fermion (an elementary particle with spin of 1 /2) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles.

Neutrino oscillation

Neutrino oscillation is a quantum mechanical phenomenon in which a neutrino created with a specific lepton family number ("lepton flavor": electron, muon, or tau) can later be measured to have a different lepton family number. The probability of measuring a particular flavor for a neutrino varies between three known states, as it propagates through space. First predicted by Bruno Pontecorvo in 1957, neutrino oscillation has since been observed by a multitude of experiments in several different contexts.

Baryon asymmetry

In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in the observable universe. Neither the standard model of particle physics nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges.

Marco Drewes, Valerie Fiona Domcke, Michele Lucente

We study the type-I seesaw model with three right-handed neutrinos and Majorana masses below the pion mass. In this mass range, the model parameter space is not only strongly constrained by the requir

We for the first time map the range of active-sterile neutrino mixing angles in which leptogenesis is possible in the type I seesaw model with three heavy neutrinos with Majorana masses between 50 MeV

,

Right-handed neutrinos offer an elegant solution to two well-established phenomena beyond the Standard Model (SM)-masses and oscillations of neutrinos, as well as the baryon asymmetry of the Universe.