Jordan algebraIn abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms: (commutative law) (). The product of two elements x and y in a Jordan algebra is also denoted x ∘ y, particularly to avoid confusion with the product of a related associative algebra. The axioms imply that a Jordan algebra is power-associative, meaning that is independent of how we parenthesize this expression. They also imply that for all positive integers m and n.
Approximation algorithmIn computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time.
Sparse matrixIn numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of rows or columns. By contrast, if most of the elements are non-zero, the matrix is considered dense. The number of zero-valued elements divided by the total number of elements (e.
Σ-algebraIn mathematical analysis and in probability theory, a σ-algebra (also σ-field) on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space. The σ-algebras are a subset of the set algebras; elements of the latter only need to be closed under the union or intersection of finitely many subsets, which is a weaker condition.
Phase transitionIn chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of matter: solid, liquid, and gas, and in rare cases, plasma. A phase of a thermodynamic system and the states of matter have uniform physical properties. During a phase transition of a given medium, certain properties of the medium change as a result of the change of external conditions, such as temperature or pressure.
Iterative reconstructionIterative reconstruction refers to iterative algorithms used to reconstruct 2D and 3D images in certain imaging techniques. For example, in computed tomography an image must be reconstructed from projections of an object. Here, iterative reconstruction techniques are usually a better, but computationally more expensive alternative to the common filtered back projection (FBP) method, which directly calculates the image in a single reconstruction step.
Tomographic reconstructionTomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon. A notable example of applications is the reconstruction of computed tomography (CT) where cross-sectional images of patients are obtained in non-invasive manner.
Differential graded algebraIn mathematics, in particular in homological algebra, a differential graded algebra is a graded associative algebra with an added chain complex structure that respects the algebra structure. TOC A differential graded algebra (or DG-algebra for short) A is a graded algebra equipped with a map which has either degree 1 (cochain complex convention) or degree −1 (chain complex convention) that satisfies two conditions: A more succinct way to state the same definition is to say that a DG-algebra is a monoid object in the .
AlgorithmIn mathematics and computer science, an algorithm (ˈælɡərɪðəm) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning), achieving automation eventually.
Conjugate gradient methodIn mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-definite. The conjugate gradient method is often implemented as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct implementation or other direct methods such as the Cholesky decomposition. Large sparse systems often arise when numerically solving partial differential equations or optimization problems.