**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Jordan algebra

Summary

In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms:
(commutative law)
().
The product of two elements x and y in a Jordan algebra is also denoted x ∘ y, particularly to avoid confusion with the product of a related associative algebra.
The axioms imply that a Jordan algebra is power-associative, meaning that is independent of how we parenthesize this expression. They also imply that for all positive integers m and n. Thus, we may equivalently define a Jordan algebra to be a commutative, power-associative algebra such that for any element , the operations of multiplying by powers all commute.
Jordan algebras were introduced by in an effort to formalize the notion of an algebra of observables in quantum electrodynamics. It was soon shown that the algebras were not useful in this context, however they have since found many applications in mathematics. The algebras were originally called "r-number systems", but were renamed "Jordan algebras" by , who began the systematic study of general Jordan algebras.
Given an associative algebra A (not of characteristic 2), one can construct a Jordan algebra A+ using the same underlying addition vector space. Notice first that an associative algebra is a Jordan algebra if and only if it is commutative. If it is not commutative we can define a new multiplication on A to make it commutative, and in fact make it a Jordan algebra. The new multiplication x ∘ y is the Jordan product:
This defines a Jordan algebra A+, and we call these Jordan algebras, as well as any subalgebras of these Jordan algebras, special Jordan algebras. All other Jordan algebras are called exceptional Jordan algebras. The Shirshov–Cohn theorem states that any Jordan algebra with two generators is special. Related to this, Macdonald's theorem states that any polynomial in three variables, that has degree one in one of the variables, and that vanishes in every special Jordan algebra, vanishes in every Jordan algebra.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading

Related publications

Related units

Related concepts (10)

Related MOOCs

Related courses (8)

Related people

Related lectures (180)

No results

No results

Non-associative algebra

A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation.

Jordan algebra

In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms: (commutative law) (). The product of two elements x and y in a Jordan algebra is also denoted x ∘ y, particularly to avoid confusion with the product of a related associative algebra. The axioms imply that a Jordan algebra is power-associative, meaning that is independent of how we parenthesize this expression. They also imply that for all positive integers m and n.

Albert algebra

In mathematics, an Albert algebra is a 27-dimensional exceptional Jordan algebra. They are named after Abraham Adrian Albert, who pioneered the study of non-associative algebras, usually working over the real numbers. Over the real numbers, there are three such Jordan algebras up to isomorphism. One of them, which was first mentioned by and studied by , is the set of 3×3 self-adjoint matrices over the octonions, equipped with the binary operation where denotes matrix multiplication.

No results

Study the basics of representation theory of groups and associative algebras.

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

The course is based on Durrett's text book
Probability: Theory and Examples.

It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.

It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.

No results

Representation Theory: Algebras and Homomorphisms

Covers the goals and motivations of representation theory, focusing on associative algebras and homomorphisms.

Analysis IV: Convolution and Hilbert Structure

Explores convolution, uniform continuity, Hilbert structure, and Lebesgue measure in analysis.

Analytical Study of Space

Explores landmarks, coordinates, vectors, coplanarity, Cartesian equations, and geometric rules in space.