Bayesian inference from composite likelihoods, with an application to spatial extremes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
xtreme value analysis is concerned with the modelling of extreme events such as floods and heatwaves, which can have large impacts. Statistical modelling can be useful to better assess risks even if, due to scarcity of measurements, there is inherently ver ...
A new strategy based on numerical homogenization and Bayesian techniques for solvingmultiscale inverse problems is introduced. We consider a class of elliptic problems which vary ata microscopic scale, and we aim at recovering the highly oscillatory tensor ...
This Guideline proposes a protocol for the validation of forensic evaluation methods at the source level, using the Likelihood Ratio framework as defined within the Bayes' inference model. In the context of the inference of identity of source, the Likeliho ...
In recent years important progress has been achieved towards proving the validity of the replica predictions for the (asymptotic) mutual information (or free energy) in Bayesian inference problems. The proof techniques that have emerged appear to be quite ...
The likelihood function is a fundamental component in Bayesian statistics. However, evaluating the likelihood of an observation is computationally intractable in many applications. In this paper, we propose a non-parametric approximation of the likelihood ...
In causal inference the effect of confounding may be controlled using regression adjustment in an outcome model, propensity score adjustment, inverse probability of treatment weighting or a combination of these. Approaches based on modelling the treatment ...
We consider the problem of measuring how much a system reveals about its secret inputs. We work in the black-box setting: we assume no prior knowledge of the system's internals, and we run the system for choices of secrets and measure its leakage from the ...
We consider the inference problem for parameters in stochastic differential equation models from discrete time observations (e.g. experimental or simulation data). Specifically, we study the case where one does not have access to observations of the model ...
A new strategy based on numerical homogenization and Bayesian techniques for solving multiscale inverse problems is introduced. We consider a class of elliptic problems which vary at a microscopic scale, and we aim at recovering the highly oscillatory tens ...
In this work, we formulate the fixed-length distribution matching as a Bayesian inference problem. Our proposed solution is inspired from the compressed sensing paradigm and the sparse superposition (SS) codes. First, we introduce sparsity in the binary so ...