Phase transitionIn chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of matter: solid, liquid, and gas, and in rare cases, plasma. A phase of a thermodynamic system and the states of matter have uniform physical properties. During a phase transition of a given medium, certain properties of the medium change as a result of the change of external conditions, such as temperature or pressure.
DataIn common usage and statistics, data (USˈdætə; UKˈdeɪtə) is a collection of discrete or continuous values that convey information, describing the quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted formally. A datum is an individual value in a collection of data. Data is usually organized into structures such as tables that provide additional context and meaning, and which may themselves be used as data in larger structures.
Hurst exponentThe Hurst exponent is used as a measure of long-term memory of time series. It relates to the autocorrelations of the time series, and the rate at which these decrease as the lag between pairs of values increases. Studies involving the Hurst exponent were originally developed in hydrology for the practical matter of determining optimum dam sizing for the Nile river's volatile rain and drought conditions that had been observed over a long period of time.
Control volumeIn continuum mechanics and thermodynamics, a control volume (CV) is a mathematical abstraction employed in the process of creating mathematical models of physical processes. In an inertial frame of reference, it is a fictitious region of a given volume fixed in space or moving with constant flow velocity through which the continuum (gas, liquid or solid) flows. The closed surface enclosing the region is referred to as the control surface. At steady state, a control volume can be thought of as an arbitrary volume in which the mass of the continuum remains constant.
Brownian ratchetIn the philosophy of thermal and statistical physics, the Brownian ratchet or Feynman–Smoluchowski ratchet is an apparent perpetual motion machine of the second kind (converting thermal energy into mechanical work), first analysed in 1912 as a thought experiment by Polish physicist Marian Smoluchowski. It was popularised by American Nobel laureate physicist Richard Feynman in a physics lecture at the California Institute of Technology on May 11, 1962, during his Messenger Lectures series The Character of Physical Law in Cornell University in 1964 and in his text The Feynman Lectures on Physics as an illustration of the laws of thermodynamics.
Contact forceA contact force is any force that occurs as a result of two objects making contact with each other. Contact forces are ubiquitous and are responsible for most visible interactions between macroscopic collections of matter. Pushing a car or kicking a ball are some of the everyday examples where contact forces are at work. In the first case the force is continuously applied to the car by a person, while in the second case the force is delivered in a short impulse.
String vibrationA vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating strings are the basis of string instruments such as guitars, cellos, and pianos. The velocity of propagation of a wave in a string () is proportional to the square root of the force of tension of the string () and inversely proportional to the square root of the linear density () of the string: This relationship was discovered by Vincenzo Galilei in the late 1500s.
Undefined behaviorIn computer programming, undefined behavior (UB) is the result of executing a program whose behavior is prescribed to be unpredictable, in the language specification to which the computer code adheres. This is different from unspecified behavior, for which the language specification does not prescribe a result, and implementation-defined behavior that defers to the documentation of another component of the platform (such as the ABI or the translator documentation).
NanomotorA nanomotor is a molecular or nanoscale device capable of converting energy into movement. It can typically generate forces on the order of piconewtons. While nanoparticles have been utilized by artists for centuries, such as in the famous Lycurgus cup, scientific research into nanotechnology did not come about until recently. In 1959, Richard Feynman gave a famous talk entitled "There's Plenty of Room at the Bottom" at the American Physical Society's conference hosted at Caltech.