Structure-Correlation Principles Connecting Ground State Properties and Reaction Barrier Heights for the Cope Rearrangement of Semibullvalenes
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Metallic transition metal dichalcogenides, such as tantalum diselenide (TaSe2), display quantum correlated phenomena of superconductivity and charge density waves (CDWs) at low temperatures. Here, the photophysics of 2H-TaSe2 during CDW transitions is reve ...
We present a workflow that traces the path from the bulk structure of a crystalline material to assessing its performance in carbon capture from coal's postcombustion flue gases. This workflow is applied to a database of 324 covalent-organic frameworks (CO ...
The simulation of condensed matter in first principles Molecular Dynamics (FPMD) heavily relies on Kohn-Sham Density Functional Theory (KS-DFT) calculations. The accuracy of such simulations is governed by the reliability of the underlying potential energy ...
The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term ...
Directly measuring the rate of a surface chemical reaction remains a challenging problem. For example, even after more than 30 years of study, there is still no agreement on the kinetic parameters for one of the simplest surface reactions: desorption of CO ...
Kohn-Sham density functional theory offers a powerful and robust formalism for investigating the electronic structure of many-body systems while providing a practical balance of accuracy and computational cost unmatched by other methods. Despite this succe ...
The fast and reliable determination of wave functions and electron densities of macromolecules has been one of the goals of theoretical chemistry for a long time, and in this context, several linear scaling techniques have been successfully devised over th ...
Density Functional Theory (DFT) and its time-dependent extension (TDDFT) have become two of the most popular approaches for computer simulations of the electronic structure and response properties of quantum systems. A reasonable compromise between accurac ...
The electronic charge density plays a central role in determining the behavior of matter at the atomic scale, but its computational evaluation requires demanding electronic-structure calculations. We introduce an atom-centered, symmetry-adapted framework t ...
We present a first-principles approach for inelastic quantum transport calculations based on maximally localized Wannier functions. Electronic-structure properties are obtained from density-functional theory in a plane-wave basis, and electron-vibration co ...